Abstract

We measure mutual intensity in quasi-monochromatic light. Our setup is simple, without a lens. A rotating grating and a one-dimensional receiver are the only pieces of hardware. The action of our system can be understood as that of a mock Lau interferometer.

© 1995 Optical Society of America

Full Article  |  PDF Article

Errata

Adolf W. Lohmann, J. Ojeda-Castañeda, and Jorge Ibarra, "Simple coherence measurement with a modified Lau interferometer: erratum," Opt. Lett. 20, 1219-1219 (1995)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-20-10-1219

References

  • View by:
  • |
  • |
  • |

  1. L. Mertz, N. O. Young, J. Armitage, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 51.
  2. L. Metz, Transformations in Optics (Wiley, New York, 1965), p. 64.
  3. H. Bartelt, J. Jahns, Opt. Commun. 30, 268 (1979).
    [CrossRef]
  4. A. W. Lohmann, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 58.
  5. H. Klages, J. Phys. (Paris) 28, Suppl. 3–4, C2 (1967).
  6. J. C. Barreiro, J. Ojeda-Castaneda, Opt. Lett. 18, 302 (1993).
    [CrossRef] [PubMed]
  7. L. N. Mertz, G. H. Nakano, J. R. Kilner, J. Opt. Soc. Am. A 3, 2167 (1986).
    [CrossRef]
  8. M. Oda, Appl. Opt. 4, 143 (1965).
    [CrossRef]
  9. J. W. Goodman, P. Kellman, E. W. Hansen, Appl. Opt. 16, 733 (1977).
    [CrossRef] [PubMed]
  10. R. J. Marks, J. F. J. Walkup, M. Hagler, T. F. Krile, Appl. Opt. 16, 739 (1977).
    [CrossRef]

1993

1986

1979

H. Bartelt, J. Jahns, Opt. Commun. 30, 268 (1979).
[CrossRef]

1977

1967

H. Klages, J. Phys. (Paris) 28, Suppl. 3–4, C2 (1967).

1965

Armitage, J.

L. Mertz, N. O. Young, J. Armitage, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 51.

Barreiro, J. C.

Bartelt, H.

H. Bartelt, J. Jahns, Opt. Commun. 30, 268 (1979).
[CrossRef]

Goodman, J. W.

Hagler, M.

Hansen, E. W.

Jahns, J.

H. Bartelt, J. Jahns, Opt. Commun. 30, 268 (1979).
[CrossRef]

Kellman, P.

Kilner, J. R.

Klages, H.

H. Klages, J. Phys. (Paris) 28, Suppl. 3–4, C2 (1967).

Krile, T. F.

Lohmann, A. W.

A. W. Lohmann, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 58.

Marks, R. J.

Mertz, L.

L. Mertz, N. O. Young, J. Armitage, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 51.

Mertz, L. N.

Metz, L.

L. Metz, Transformations in Optics (Wiley, New York, 1965), p. 64.

Nakano, G. H.

Oda, M.

Ojeda-Castaneda, J.

Walkup, J. F. J.

Young, N. O.

L. Mertz, N. O. Young, J. Armitage, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 51.

Appl. Opt.

J. Opt. Soc. Am. A

J. Phys.

H. Klages, J. Phys. (Paris) 28, Suppl. 3–4, C2 (1967).

Opt. Commun.

H. Bartelt, J. Jahns, Opt. Commun. 30, 268 (1979).
[CrossRef]

Opt. Lett.

Other

A. W. Lohmann, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 58.

L. Mertz, N. O. Young, J. Armitage, in Proceedings of the Conference on Optical Instruments and Techniques (Chapman & Hall, London, 1962), p. 51.

L. Metz, Transformations in Optics (Wiley, New York, 1965), p. 64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the optical setup: S, source; G, rotating grating; 1-D, one-dimensional. (a) With a point source, (b) with a vertical slit source.

Fig. 2
Fig. 2

Irradiance distributions generated with a noncoherent slit source for θ = 0°, 1°, 2°, 3°.

Fig. 3
Fig. 3

Angle of zero visibility versus angular source size. The experimental values appear as points and the theoretical results as a continuous curve.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x , y ; η ) = exp { i π [ x 2 + ( y - η ) 2 ] / λ R o } .
T ( x , y ) = m = - a m exp [ i 2 π ( x cos θ + y sin θ ) m / d ] .
u ( x , y , R o ) = T ( x , y ) ϕ ( x , y ; η ) .
1 / R o + 1 / R = ( M / L Z T ) ,             Z t = 2 d 2 / λ
R = ( L Z T / M ) / ( 1 - L Z T / M R o ) ,
v ( x , y , R o + R ) = m = - a m exp ( i 2 π { x cos θ + [ y + ( R / R o ) η ] sin θ } m / ( 1 + R / R o ) d ) .
I o ( x ; η ) = v ( x , y = 0 , R o + R ) 2 × m = - ( b m exp { i 2 π [ ( R / R o ) η tan θ ] m / p } ) × exp ( i 2 π m x / p ) ,
b m = s = - a m + s a s * = b - m
p = ( 1 + R / R o ) d / cos θ ,
p = d / ( 1 - L Z T / M R o ) cos θ .
I ( x ) = - γ ( η ) I 0 ( x ; η ) d η = m = - C m exp ( i 2 π x m / p ) = C o + 2 m = 1 C m cos ( 2 π x m / p ) ,
C m = b m - γ ( η ) exp [ i 2 π ( m R tan θ / p R o ) η ] d η = b m γ ˜ ( m R tan θ / p R o ) .
Γ ( Δ x / λ R o ) = γ ˜ ( m R tan θ / p R o ) .
Δ x = m ( λ R / p ) tan θ ,
Δ x = ( m L / M ) ( λ Z t / d ) sin θ = ( 2 m L sin θ / M ) d .
C m = b m Γ ( m L Z T sin θ / M R o d ) .
C m = 0.5 sinc ( m / 2 ) sinc ( 2 m L sin θ W d / λ M R o ) ,
( W / R o ) sin θ = α sin θ = M λ / 2 m L d .

Metrics