Abstract

A novel speckle technique, subfeature speckle interferometry, is introduced that relies on the amplitude interference of two independent speckle patterns, originating from coherent illumination, by use of an optical system that produces interferometric quality interference fringes on a scale comparable with the speckle correlation length. Examples are given for in-plane translation, sample tilt, and temperature measurement (strain). A temperature measurement accuracy σ = 0.92 °C is realized. In contrast to traditional full-field speckle cross-correlation techniques, this technique requires only a small number of detector elements with minimal signal processing and is compatible with many real-time sensor applications.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example,J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1984).
  2. O. D. D. Soares, ed., Optical Metrology, NATO ASI Series (Nijhoff, Dordrecht, The Netherlands, 1987).
  3. A. R. Weeks, H. R. Myler, J. D. Emery, Opt. Eng. 33, 850 (1994).
    [CrossRef]
  4. I. Yamaguchi, Opt. Eng. 27, 214 (1988).
  5. J. Wortman, J. Gelpey, M. Greene, S. R. J. Brueck, F. Rooseboom, eds., Rapid Thermal and Integrated Processing III (Materials Research Society, Pittsburgh, Pa., 1994).
  6. S. H. Zaidi, S. R. J. Brueck, J. R. McNeil, J. Vac. Sci. Technol. B 10, 166 (1992).
    [CrossRef]
  7. S. R. J. Brueck, S. H. Zaidi, M. K. Lang, Mater. Res. Soc. Symp. Proc. 303, 117 (1993).
    [CrossRef]
  8. Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
    [CrossRef]

1994 (1)

A. R. Weeks, H. R. Myler, J. D. Emery, Opt. Eng. 33, 850 (1994).
[CrossRef]

1993 (1)

S. R. J. Brueck, S. H. Zaidi, M. K. Lang, Mater. Res. Soc. Symp. Proc. 303, 117 (1993).
[CrossRef]

1992 (1)

S. H. Zaidi, S. R. J. Brueck, J. R. McNeil, J. Vac. Sci. Technol. B 10, 166 (1992).
[CrossRef]

1988 (1)

I. Yamaguchi, Opt. Eng. 27, 214 (1988).

1984 (1)

Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, S. H. Zaidi, M. K. Lang, Mater. Res. Soc. Symp. Proc. 303, 117 (1993).
[CrossRef]

S. H. Zaidi, S. R. J. Brueck, J. R. McNeil, J. Vac. Sci. Technol. B 10, 166 (1992).
[CrossRef]

Emery, J. D.

A. R. Weeks, H. R. Myler, J. D. Emery, Opt. Eng. 33, 850 (1994).
[CrossRef]

Lang, M. K.

S. R. J. Brueck, S. H. Zaidi, M. K. Lang, Mater. Res. Soc. Symp. Proc. 303, 117 (1993).
[CrossRef]

McNeil, J. R.

S. H. Zaidi, S. R. J. Brueck, J. R. McNeil, J. Vac. Sci. Technol. B 10, 166 (1992).
[CrossRef]

Myler, H. R.

A. R. Weeks, H. R. Myler, J. D. Emery, Opt. Eng. 33, 850 (1994).
[CrossRef]

Okada, Y.

Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Tokumaru, Y.

Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Weeks, A. R.

A. R. Weeks, H. R. Myler, J. D. Emery, Opt. Eng. 33, 850 (1994).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, Opt. Eng. 27, 214 (1988).

Zaidi, S. H.

S. R. J. Brueck, S. H. Zaidi, M. K. Lang, Mater. Res. Soc. Symp. Proc. 303, 117 (1993).
[CrossRef]

S. H. Zaidi, S. R. J. Brueck, J. R. McNeil, J. Vac. Sci. Technol. B 10, 166 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. H. Zaidi, S. R. J. Brueck, J. R. McNeil, J. Vac. Sci. Technol. B 10, 166 (1992).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

S. R. J. Brueck, S. H. Zaidi, M. K. Lang, Mater. Res. Soc. Symp. Proc. 303, 117 (1993).
[CrossRef]

Opt. Eng. (2)

A. R. Weeks, H. R. Myler, J. D. Emery, Opt. Eng. 33, 850 (1994).
[CrossRef]

I. Yamaguchi, Opt. Eng. 27, 214 (1988).

Other (3)

J. Wortman, J. Gelpey, M. Greene, S. R. J. Brueck, F. Rooseboom, eds., Rapid Thermal and Integrated Processing III (Materials Research Society, Pittsburgh, Pa., 1994).

See, for example,J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1984).

O. D. D. Soares, ed., Optical Metrology, NATO ASI Series (Nijhoff, Dordrecht, The Netherlands, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SUFSI experimental geometries: (a) Single-point geometry with speckle fields collected at symmetrically disposed solid angles, sensitive to in-plane translation. (b) Two-point geometry sensitive to strain (differential translation) and tilt.

Fig. 2
Fig. 2

Newton’s rings interference fringes on a scale comparable with a speckle feature.

Fig. 3
Fig. 3

SUFSI signal versus translation for a single spot with left and right speckle patterns interfering (dashed curve) and for differential translation from two spots with speckle fields collected at the same solid angle (solid curve).

Fig. 4
Fig. 4

SUFSI and thermocouple measurements of temperature for a radiatively heated Si wafer. The rms deviation is 0.92 °C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = A l ( r ) 2 + A r ( r ) 2 + 2 A l ( r ) A r ( r ) × cos [ Ψ l ( r ) - Ψ r ( r ) + k ρ 2 ( 1 / R l - 1 / R r ) / 2 ] ,
Γ speckle , i λ R i / d .
Γ fringe { 2 λ [ R r R l / ( R r - R l ) ] } 1 / 2
Ψ l ( r , r s ) = Ψ l ( r , r s 0 ) + k ( Δ x s sin θ - Δ z s cos θ ) , Ψ r ( r , r s ) = Ψ r ( r , r s 0 ) + k ( - Δ x s sin θ - Δ z s cos θ ) , Ψ l ( r , r s ) - Ψ r ( r , r s ) = Ψ l ( r , r s 0 ) - Ψ r ( r , r s 0 ) + 2 k Δ x s sin θ ,
Ψ i l ( r , r s ) - Ψ i 2 ( r , r s 2 ) + k ρ 2 2 ( 1 R i 1 - 1 R i 2 ) ,             i = l , r ,
Δ Ψ l - Δ Ψ r = - 2 k L sin θ [ α Δ T - ( 1 - cos γ ) ] ,
Δ Ψ l + Δ Ψ r = - 2 k L sin γ cos θ .

Metrics