Abstract

Tunable laser radiation with megahertz linewidth is generated with a simple, inexpensive, and compact laser system that uses two common microscope slides as the only intracavity tuning elements. The laser emits two radiation modes whose frequencies are separated by 1.2 GHz, corresponding to the free spectral range of the laser resonator. The frequencies may be rapidly varied over a range of 1.5 GHz at a rate of 2 GHz/s.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Harrison, A. Finch, D. Rines, G. Rines, P. Moulton, Opt. Lett. 16, 581 (1991).
    [CrossRef] [PubMed]
  2. Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
    [CrossRef]
  3. R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992), Chap. 1, p. 20.
  4. A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
    [CrossRef]
  5. W. R. Rapoport, C. P. Khattak, Appl. Opt. 27, 2577 (1988).
    [CrossRef]
  6. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 21.
  8. S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
    [CrossRef]

1993 (1)

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

1992 (1)

R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992), Chap. 1, p. 20.

1991 (2)

J. Harrison, A. Finch, D. Rines, G. Rines, P. Moulton, Opt. Lett. 16, 581 (1991).
[CrossRef] [PubMed]

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

1988 (2)

A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
[CrossRef]

W. R. Rapoport, C. P. Khattak, Appl. Opt. 27, 2577 (1988).
[CrossRef]

1966 (1)

Aggarwal, R. L.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
[CrossRef]

Biraben, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

Bourzeix, S.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992), Chap. 1, p. 20.

Fahey, R. E.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
[CrossRef]

Finch, A.

Harrison, J.

Julien, L.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

Khattak, C. P.

W. R. Rapoport, C. P. Khattak, Appl. Opt. 27, 2577 (1988).
[CrossRef]

Kogelnik, H.

Li, T.

Lin, Z.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

Moulton, P.

Nez, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

Plimmer, M. D.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

Rapoport, W. R.

W. R. Rapoport, C. P. Khattak, Appl. Opt. 27, 2577 (1988).
[CrossRef]

Rines, D.

Rines, G.

Sanchez, A.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
[CrossRef]

Shimizu, F.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

Shimizu, K.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 21.

Strauss, A. J.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
[CrossRef]

Takuma, H.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

Zhan, M.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

Appl. Opt. (2)

W. R. Rapoport, C. P. Khattak, Appl. Opt. 27, 2577 (1988).
[CrossRef]

H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

A. Sanchez, A. J. Strauss, R. L. Aggarwal, R. E. Fahey, IEEE J. Quantum Electron. 24, 995 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jpn. J. Appl. Phys. 30, L1324 (1991).
[CrossRef]

Nonlinear Optics (1)

R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992), Chap. 1, p. 20.

Opt. Commun. (1)

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, Opt. Commun. 99, 89 (1993).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mechanical design for a compact tunable Ti:sapphire laser.

Fig. 2
Fig. 2

Laser output versus pump power incident upon the curved resonator mirror. The dashed line describes the laser at 980 nm when the glass plate étalons are removed from the cavity.

Fig. 3
Fig. 3

Laser output spectrum recorded with a Fabry–Perot spectrum analyzer (free spectral range 3 GHz). The two modes are separated by the free spectral range of the laser cavity (1.25 GHz). The observed linewidth of 3 MHz is limited by the resolution of the spectrum analyzer.

Metrics