Abstract

An in-line fiber polarizer is proposed and demonstrated. The attenuation of a single-mode fiber experiencing an axial periodic perturbation shows peaks at certain wavelengths, resulting from the power coupling between the guided mode and the cladding modes. When the fiber has significant linear birefringence, each of these peaks is split into two peaks. The fiber thus exhibits polarization-selective attenuation characteristics. An example of such a polarizer is demonstrated based on a highly birefringent fiber with a beat length of 1.3 mm. A 25-dB polarization extinction ratio is obtained, with an attenuation of 1.3 dB at an operating wavelength of 1177 nm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, H. G. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
    [CrossRef] [PubMed]
  2. T. Hosaka, K. Okamoto, J. Edahiro, Opt. Lett. 8, 124 (1983).
    [CrossRef] [PubMed]
  3. M. N. Zervas, I. P. Giles, Electron. Lett. 25, 321 (1985).
    [CrossRef]
  4. M. N. Zervas, IEEE Photon. Technol. Lett. 2, 597 (1990).
    [CrossRef]
  5. W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
    [CrossRef]
  6. D. Marcuse, Appl. Opt. 23, 1082 (1984).
    [CrossRef] [PubMed]
  7. N. Lagakos, T. Litovitz, P. Macedo, R. Mohr, R. Meister, Appl. Opt. 20, 167 (1981).
    [CrossRef] [PubMed]
  8. J. N. Fields, J. H. Cole, Appl. Opt. 19, 3265 (1980).
    [CrossRef]
  9. A. L. Harmer, German patentD2 819 590 (1979).
  10. C. B. Probst, A. Bjarklev, S. B. Andersen, J. Lightwave Technol. 7, 55 (1989).
    [CrossRef]
  11. K. A. Murphy, V. Arya, A. Wang, R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” submitted toJ. Lightwave Technol.
  12. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]

1990 (2)

M. N. Zervas, IEEE Photon. Technol. Lett. 2, 597 (1990).
[CrossRef]

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

1989 (2)

C. B. Probst, A. Bjarklev, S. B. Andersen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
[CrossRef] [PubMed]

1985 (1)

M. N. Zervas, I. P. Giles, Electron. Lett. 25, 321 (1985).
[CrossRef]

1984 (1)

1983 (1)

1981 (1)

1980 (2)

Andersen, S. B.

C. B. Probst, A. Bjarklev, S. B. Andersen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Arya, V.

K. A. Murphy, V. Arya, A. Wang, R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” submitted toJ. Lightwave Technol.

Bergh, R. A.

Bjarklev, A.

C. B. Probst, A. Bjarklev, S. B. Andersen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Claus, R. O.

K. A. Murphy, V. Arya, A. Wang, R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” submitted toJ. Lightwave Technol.

Cole, J. H.

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Edahiro, J.

Fields, J. N.

Giles, I. P.

M. N. Zervas, I. P. Giles, Electron. Lett. 25, 321 (1985).
[CrossRef]

Glenn, W. H.

Harmer, A. L.

A. L. Harmer, German patentD2 819 590 (1979).

Hart, T.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Hosaka, T.

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Lagakos, N.

Lefevre, H. G.

Litovitz, T.

Macedo, P.

Marcuse, D.

Meister, R.

Meltz, G.

Mohr, R.

Morey, W. W.

Murphy, K. A.

K. A. Murphy, V. Arya, A. Wang, R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” submitted toJ. Lightwave Technol.

Okamoto, K.

Probst, C. B.

C. B. Probst, A. Bjarklev, S. B. Andersen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Shaw, H. J.

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Wang, A.

K. A. Murphy, V. Arya, A. Wang, R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” submitted toJ. Lightwave Technol.

Zervas, M. N.

M. N. Zervas, IEEE Photon. Technol. Lett. 2, 597 (1990).
[CrossRef]

M. N. Zervas, I. P. Giles, Electron. Lett. 25, 321 (1985).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

M. N. Zervas, I. P. Giles, Electron. Lett. 25, 321 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. N. Zervas, IEEE Photon. Technol. Lett. 2, 597 (1990).
[CrossRef]

J. Lightwave Technol. (2)

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

C. B. Probst, A. Bjarklev, S. B. Andersen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Opt. Lett. (3)

Other (2)

K. A. Murphy, V. Arya, A. Wang, R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” submitted toJ. Lightwave Technol.

A. L. Harmer, German patentD2 819 590 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Theoretical evaluation of the attenuation coefficient of a periodically microbent single-mode fiber. (b) Measured attenuation spectrum of a microbent single-mode fiber with the same fiber parameters and the same period spacing of the microbends as used in the theoretical calculation.

Fig. 2
Fig. 2

In-line fiber polarizer based on Hi-Bi single-mode fiber experiencing a periodic perturbation.

Fig. 3
Fig. 3

Schematic of the apparatus for the demonstration and evaluation of the in-line fiber polarizer.

Fig. 4
Fig. 4

Output optical spectra with the orientations of the polarization analyzer at (a) 45°, (b) 90°, and (c) 135°.

Metrics