Abstract

The origin and the elimination of dynamic instability have been experimentally studied in a self-pumped phase-conjugate mirror (SPPCM) of a Cu:KNSBN crystal. Experimental results show that the dynamic instability of the SPPCM arises from the competition between the self-generated fanning effect and SPPCM formation. The ordinary-polarized component of a partially extraordinary-polarized incident light beam can act to decrease

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  2. A. M. C. Smout, R. W. Eason, M. C. Gower, Opt. Commun. 59, 77 (1986).
    [CrossRef]
  3. D. J. Gauthier, P. Narum, R. W. Boyd, Phys. Rev. Lett. 58, 1640 (1987).
    [CrossRef] [PubMed]
  4. A. V. Nowak, T. R. T. R. Moore, R. A. Fisher, J. Opt. Soc. Am. B 5, 1864 (1988).
    [CrossRef]
  5. T. Rauch, C. Denz, T. Tschudi, Opt. Commun. 88, 160 (1992).
    [CrossRef]
  6. P. M. Jeffrey, R. W. Eason, J. Opt. Soc. Am. B 11, 476 (1994).
    [CrossRef]
  7. P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
    [CrossRef]
  8. M. C. Gower, P. Hribek, J. Opt. Soc. Am. B 5, 1750 (1988).
    [CrossRef]
  9. A. K. Majumdar, J. L. Kobesky, Opt. Commun. 75, 339 (1990).
    [CrossRef]
  10. N. V. Bogodaev, L. I. Ivleva, A. S. Korshunov, A. V. Mamaev, N. N. Polozkov, A. A. Zozulya, J. Opt. Soc. Am. B 10, 1054 (1993).
    [CrossRef]
  11. A. A. Zozulya, IEEE J. Quantum Electron. 29, 538 (1993).
    [CrossRef]
  12. S. Orlov, M. Segev, A. Yariv, G. C. Valley, Opt. Lett. 19, 578 (1994).
    [CrossRef] [PubMed]

1994 (2)

1993 (2)

1992 (1)

T. Rauch, C. Denz, T. Tschudi, Opt. Commun. 88, 160 (1992).
[CrossRef]

1990 (1)

A. K. Majumdar, J. L. Kobesky, Opt. Commun. 75, 339 (1990).
[CrossRef]

1988 (2)

1987 (1)

D. J. Gauthier, P. Narum, R. W. Boyd, Phys. Rev. Lett. 58, 1640 (1987).
[CrossRef] [PubMed]

1986 (1)

A. M. C. Smout, R. W. Eason, M. C. Gower, Opt. Commun. 59, 77 (1986).
[CrossRef]

1985 (1)

P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
[CrossRef]

1982 (1)

Albers, J.

P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
[CrossRef]

Bogodaev, N. V.

Boyd, R. W.

D. J. Gauthier, P. Narum, R. W. Boyd, Phys. Rev. Lett. 58, 1640 (1987).
[CrossRef] [PubMed]

Denz, C.

T. Rauch, C. Denz, T. Tschudi, Opt. Commun. 88, 160 (1992).
[CrossRef]

Eason, R. W.

P. M. Jeffrey, R. W. Eason, J. Opt. Soc. Am. B 11, 476 (1994).
[CrossRef]

A. M. C. Smout, R. W. Eason, M. C. Gower, Opt. Commun. 59, 77 (1986).
[CrossRef]

Feinberg, J.

Fisher, R. A.

Gauthier, D. J.

D. J. Gauthier, P. Narum, R. W. Boyd, Phys. Rev. Lett. 58, 1640 (1987).
[CrossRef] [PubMed]

Gower, M. C.

M. C. Gower, P. Hribek, J. Opt. Soc. Am. B 5, 1750 (1988).
[CrossRef]

A. M. C. Smout, R. W. Eason, M. C. Gower, Opt. Commun. 59, 77 (1986).
[CrossRef]

Günter, P.

P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
[CrossRef]

Hribek, P.

Ivleva, L. I.

Jeffrey, P. M.

Kobesky, J. L.

A. K. Majumdar, J. L. Kobesky, Opt. Commun. 75, 339 (1990).
[CrossRef]

Korshunov, A. S.

Majumdar, A. K.

A. K. Majumdar, J. L. Kobesky, Opt. Commun. 75, 339 (1990).
[CrossRef]

Mamaev, A. V.

Moore, T. R. T. R.

Narum, P.

D. J. Gauthier, P. Narum, R. W. Boyd, Phys. Rev. Lett. 58, 1640 (1987).
[CrossRef] [PubMed]

Nowak, A. V.

Orlov, S.

Polozkov, N. N.

Rauch, T.

T. Rauch, C. Denz, T. Tschudi, Opt. Commun. 88, 160 (1992).
[CrossRef]

Segev, M.

Smout, A. M. C.

A. M. C. Smout, R. W. Eason, M. C. Gower, Opt. Commun. 59, 77 (1986).
[CrossRef]

Tschudi, T.

T. Rauch, C. Denz, T. Tschudi, Opt. Commun. 88, 160 (1992).
[CrossRef]

Valley, G. C.

Voit, E.

P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
[CrossRef]

Yariv, A.

Zha, M. Z.

P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
[CrossRef]

Zozulya, A. A.

IEEE J. Quantum Electron. (1)

A. A. Zozulya, IEEE J. Quantum Electron. 29, 538 (1993).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (4)

A. M. C. Smout, R. W. Eason, M. C. Gower, Opt. Commun. 59, 77 (1986).
[CrossRef]

T. Rauch, C. Denz, T. Tschudi, Opt. Commun. 88, 160 (1992).
[CrossRef]

P. Günter, E. Voit, M. Z. Zha, J. Albers, Opt. Commun. 55, 210 (1985).
[CrossRef]

A. K. Majumdar, J. L. Kobesky, Opt. Commun. 75, 339 (1990).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. J. Gauthier, P. Narum, R. W. Boyd, Phys. Rev. Lett. 58, 1640 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement of the Cu:KNSBN crystal SPPCM. θ, incident angle; Φ, polarization angle between the polarized direction of incident light and the extraordinary-polarized direction; e and o, extraordinary and ordinary light, respectively; λ/2, half-wave plate; D’s, detectors.

Fig. 2
Fig. 2

Observed dynamic instability of the SPPCM under extraordinary-polarized light incidence (Φ = 0°). Here θ is 35°, and the incident light power is 5 mW. The ordinate corresponds to the I*/I percentage.

Fig. 3
Fig. 3

Photographs of the SPPCM in three different states of dynamic instability. (a), (b), and (c) correspond to points A, B, and C, respectively, of Fig. 2.

Fig. 4
Fig. 4

Experimental arrangement for investigating the diffraction-efficiency change of self-generated fanning as a function of the polarization direction of the incident light that is vertically incident upon the surface of the Cu:KNSBN crystal. The incident light power is 5 mW, the focus of the lens is 18.5 cm, and the incident beam diameter is 1.1 mm. P, polarizer; D, detector.

Fig. 5
Fig. 5

Diffraction efficiency of self-generated fanning as a function of the polarization angle of the incident light.

Fig. 6
Fig. 6

Stability observations of the SPPCM for (a) Φ = 26° and (b) Φ = 35° polarization angles of the incident light under the same incident conditions as those of Fig. 2. The left ordinate corresponds to the I*/I percentage, and the right ordinate corresponds to the I*/Ie percentage.

Metrics