Abstract

Ultrashort optical second-harmonic pulses based on a traditional phase-matched Čerenkov second-harmonic generation scheme, with an additional prism to equalize the arrival time, are proposed. Proton-exchanged KTP, LiNbO3 waveguides, and several prism materials are considered in the evaluation. There is no constraint on crystal length, making high efficiency possible as well as preserving an ultrashort pulse width. The proposed approach may be a practical and efficient way to achieve convenient ultrashort harmonic pulses.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Comly, E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
    [CrossRef]
  2. R. J. Ellingson, C. L. Tang, Opt. Lett. 17, 343 (1992).
    [CrossRef] [PubMed]
  3. R. A. Cheville, M. T. Reiten, N. J. Halas, Opt. Lett. 17, 1343 (1992).
    [CrossRef] [PubMed]
  4. O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  5. G. Y. Wang, E. Garmire, Opt. Lett. 19, 254 (1994).
    [CrossRef] [PubMed]
  6. Data on commercial glasses can be found, for example, inOptics Guide 5 (Melles-Griot,, Irvine, Calif., 1993), Sec. 3-9.
  7. K. Tatsuno, H. Yanagisawa, T. Andou, M. McLoughlin, Appl. Opt. 31, 305 (1992).
    [CrossRef] [PubMed]
  8. See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
    [CrossRef]
  9. Y. Azumai, H. Sato, Jpn. J. Appl. Phys. 32, 880 (1993); Y. Azumai, M. Kishimoto, H. Sato, Jpn. J. Appl. Phys. 31, 1358 (1992).
    [CrossRef]
  10. H. Tamada, IEEE J. Quantum Electron. 26, 1821 (1990).
    [CrossRef]
  11. T. Doumuki, H. Tamada, M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
    [CrossRef]

1994 (2)

T. Doumuki, H. Tamada, M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
[CrossRef]

G. Y. Wang, E. Garmire, Opt. Lett. 19, 254 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. Azumai, H. Sato, Jpn. J. Appl. Phys. 32, 880 (1993); Y. Azumai, M. Kishimoto, H. Sato, Jpn. J. Appl. Phys. 31, 1358 (1992).
[CrossRef]

1992 (3)

1991 (1)

See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

1990 (1)

H. Tamada, IEEE J. Quantum Electron. 26, 1821 (1990).
[CrossRef]

1989 (1)

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

1968 (1)

J. Comly, E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

Andou, T.

Azumai, Y.

Y. Azumai, H. Sato, Jpn. J. Appl. Phys. 32, 880 (1993); Y. Azumai, M. Kishimoto, H. Sato, Jpn. J. Appl. Phys. 31, 1358 (1992).
[CrossRef]

Cheville, R. A.

Comly, J.

J. Comly, E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

Doumuki, T.

T. Doumuki, H. Tamada, M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
[CrossRef]

Ellingson, R. J.

Garmire, E.

G. Y. Wang, E. Garmire, Opt. Lett. 19, 254 (1994).
[CrossRef] [PubMed]

J. Comly, E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

Halas, N. J.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

McLoughlin, M.

Reiten, M. T.

Saitoh, M.

T. Doumuki, H. Tamada, M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
[CrossRef]

Sato, H.

Y. Azumai, H. Sato, Jpn. J. Appl. Phys. 32, 880 (1993); Y. Azumai, M. Kishimoto, H. Sato, Jpn. J. Appl. Phys. 31, 1358 (1992).
[CrossRef]

Tamada, H.

T. Doumuki, H. Tamada, M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
[CrossRef]

See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

H. Tamada, IEEE J. Quantum Electron. 26, 1821 (1990).
[CrossRef]

Tang, C. L.

Tatsuno, K.

Wang, G. Y.

Yanagisawa, H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Comly, E. Garmire, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

T. Doumuki, H. Tamada, M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

H. Tamada, IEEE J. Quantum Electron. 26, 1821 (1990).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Azumai, H. Sato, Jpn. J. Appl. Phys. 32, 880 (1993); Y. Azumai, M. Kishimoto, H. Sato, Jpn. J. Appl. Phys. 31, 1358 (1992).
[CrossRef]

Opt. Lett. (3)

Other (1)

Data on commercial glasses can be found, for example, inOptics Guide 5 (Melles-Griot,, Irvine, Calif., 1993), Sec. 3-9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the proposed scheme.

Fig. 2
Fig. 2

Apex angle of the prism and facet angle of the KTP substrate as a function of the central fundamental wavelength.

Fig. 3
Fig. 3

Conversion efficiency in cw frequency doubling and summing as a function of fundamental wavelength for a proton-exchanged LiNbO3 waveguide 0.39 μm in depth. In (a), (b), and (c), λ1 is fixed at 800, 850, and 900 nm, respectively, while λ2 varies. In (d), λ1 = λ2 and varies. Inset: Normalized conversion efficiency at central wavelength as a function of the waveguide thickness (micrometers).

Fig. 4
Fig. 4

Conversion efficiency in cw frequency doubling as a function of fundamental wavelength for a given domain modulated waveguide. Inset: Normalized conversion efficiency at central wavelength as a function of the modulation period (micrometers).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ t AC = A B v ω + B C v p 2 ω + Δ t ,
Δ t AE = A D v 2 ω + D E c + Δ t ,

Metrics