Abstract

I analyze by numerical simulation and perturbation theory the effect of frequency-sliding filters on the interactions between orthogonally polarized solitons. It is found that strong filters may substantially increase the collision distance.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
    [CrossRef]
  2. C. De Angelis, S. Wabnitz, M. Haelterman, Electron. Lett. 29, 1568 (1993).
    [CrossRef]
  3. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991); Y. Kodama, A. Hasegawa, Opt. Lett. 17, 31 (1992).
    [CrossRef] [PubMed]
  4. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  5. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
    [CrossRef]
  6. Y. Kodama, M. Romagnoli, S. Wabnitz, Electron. Lett. 30, 261 (1994).
    [CrossRef]
  7. Y. Kodama, S. Wabnitz, Opt. Lett. 18,1311 (1993).
    [CrossRef] [PubMed]
  8. Y. Kodama, S. Wabnitz, Opt. Lett. 19, 162 (1994).
    [CrossRef] [PubMed]
  9. L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
    [CrossRef] [PubMed]
  10. V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
    [CrossRef]

1994 (3)

1993 (3)

Y. Kodama, S. Wabnitz, Opt. Lett. 18,1311 (1993).
[CrossRef] [PubMed]

C. De Angelis, S. Wabnitz, M. Haelterman, Electron. Lett. 29, 1568 (1993).
[CrossRef]

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

1992 (2)

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

1991 (1)

1981 (1)

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Bergano, N. S.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

De Angelis, C.

C. De Angelis, S. Wabnitz, M. Haelterman, Electron. Lett. 29, 1568 (1993).
[CrossRef]

Evangelides, S. G.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

Gordon, J. P.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

Haelterman, M.

C. De Angelis, S. Wabnitz, M. Haelterman, Electron. Lett. 29, 1568 (1993).
[CrossRef]

Harvey, G. T.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Haus, H. A.

Karpman, V. I.

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Kodama, Y.

Lai, Y.

Lichtman, E.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Mamyshev, P. V.

Mecozzi, A.

Mollenauer, L. F.

L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
[CrossRef] [PubMed]

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

Moores, J. D.

Neubelt, M. J.

L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
[CrossRef] [PubMed]

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Romagnoli, M.

Y. Kodama, M. Romagnoli, S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

Solov’ev, V. V.

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Wabnitz, S.

Y. Kodama, M. Romagnoli, S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

Y. Kodama, S. Wabnitz, Opt. Lett. 19, 162 (1994).
[CrossRef] [PubMed]

Y. Kodama, S. Wabnitz, Opt. Lett. 18,1311 (1993).
[CrossRef] [PubMed]

C. De Angelis, S. Wabnitz, M. Haelterman, Electron. Lett. 29, 1568 (1993).
[CrossRef]

Electron. Lett. (3)

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Y. Kodama, M. Romagnoli, S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

C. De Angelis, S. Wabnitz, M. Haelterman, Electron. Lett. 29, 1568 (1993).
[CrossRef]

J. Lightwave Technol. (1)

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Opt. Lett. (5)

Physica D (1)

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Contour plot of the intensities in the two polarization components without sliding filters.

Fig. 2
Fig. 2

Same as in Fig. 1, with sliding filters.

Fig. 3
Fig. 3

Evolution with distance Z of the average soliton separation Δ without (dashed curve) and with (solid curve) sliding filters from perturbation theory.

Fig. 4
Fig. 4

Collision distance Zc versus initial pulse separation T0 from perturbation theory and simulations with (solid curve, filled circles) and without (dashed curve, open circles) sliding filters.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i U z + ( 1 / 2 ) U t t + ( U 2 + V 2 ) U = - i [ Γ - G ( z ) ] U - i G ( z ) U t t , i V z + ( 1 / 2 ) V t t + ( V 2 + U 2 ) V = - i [ Γ - G ( z ) ] V - i G ( z ) V t t .
i u Z + ( 1 / 2 ) u T T + ( u 2 + v 2 ) u = i δ u + i β u T T - α 0 T u , i v Z + ( 1 / 2 ) v T T + ( v 2 + u 2 ) v = i δ v + i β v T T - α 0 T v .
u ( Z , T ) = η 1 sech [ η 1 ( T - ξ 1 ) ] exp [ i κ 1 ( T - ξ 1 ) + i ψ 1 ] , v ( Z , T ) = η 2 sech [ η 2 ( T - ξ 2 ) ] exp [ i κ 2 ( T - ξ 2 ) + i ψ 2 ] .
d q d Z = 2 η 3 g ( η Δ ) - 4 3 β q η 2 - 8 3 β κ η p , d κ d Z = α 0 - 4 3 β κ η 2 , d Δ d Z = - 2 q , d p d Z = 2 p [ δ - β ( η 2 + κ 2 ) ] - 4 β η κ q , d η d Z = 2 δ η - 2 β η ( η 2 3 + κ 2 ) ,

Metrics