Abstract

We report the observation of the interaction of bound multiple solitons generated by orthogonally polarized, high-amplitude pulses in strongly birefringent fibers. For the birefringence used, the threshold amplitude for the interaction is higher than that of the onset of second-order solitons on each axis. The characteristics of the output pulses are in good agreement with the results of a numerical simulation of this interaction. A general investigation of this effect is carried out at high values of birefringence, and it is found numerically that, even though the system is nonintegrable, the description of its evolution appears to be reduceable to a finite number of effective degrees of freedom.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, Opt. Lett. 15, 417 (1990); M. W. Chbat, B. J. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, J. Lightwave Technol. 10, 2011 (1992).
    [CrossRef] [PubMed]
  2. C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988).
    [CrossRef]
  3. C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
    [CrossRef]
  4. In the case of low birefringence, terms oscillating with a normalized spatial frequency of 8Z0/LB are added to Eqs. (1) and (2). Their effect is polarization instability, in which energy is transferred from the fast axis to the slow axis. See, e.g.,K. J. Blow, N. J. Doran, D. Wood, Opt. Lett. 12, 202 (1987).
    [CrossRef] [PubMed]
  5. Yu. S. Kivshar, J. Opt. Soc. Am. B 7, 2204 (1990).
    [CrossRef]
  6. E. Caglioti, B. Crosignani, P. Di Porto, Phys. Rev. A 38, 4036 (1988); V. K. Mesentsev, S. K. Turitsyn, Opt. Lett. 17, 1497 (1992); X. D. Cao, C. J. McKinstrie, J. Opt. Soc. Am. B 10, 1202 (1993).
    [CrossRef] [PubMed]
  7. J. Satsuma, N. Yajima, Suppl. Prog. Theor. Phys. 55, 284 (1974).
    [CrossRef]
  8. H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58, 747 (1987).
    [CrossRef] [PubMed]
  9. C. R. Menyuk, J. Opt. Soc. Am. B 10, 1585 (1993).
    [CrossRef]

1993

1990

1988

C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988).
[CrossRef]

E. Caglioti, B. Crosignani, P. Di Porto, Phys. Rev. A 38, 4036 (1988); V. K. Mesentsev, S. K. Turitsyn, Opt. Lett. 17, 1497 (1992); X. D. Cao, C. J. McKinstrie, J. Opt. Soc. Am. B 10, 1202 (1993).
[CrossRef] [PubMed]

1987

1974

J. Satsuma, N. Yajima, Suppl. Prog. Theor. Phys. 55, 284 (1974).
[CrossRef]

Blow, K. J.

Caglioti, E.

E. Caglioti, B. Crosignani, P. Di Porto, Phys. Rev. A 38, 4036 (1988); V. K. Mesentsev, S. K. Turitsyn, Opt. Lett. 17, 1497 (1992); X. D. Cao, C. J. McKinstrie, J. Opt. Soc. Am. B 10, 1202 (1993).
[CrossRef] [PubMed]

Crosignani, B.

E. Caglioti, B. Crosignani, P. Di Porto, Phys. Rev. A 38, 4036 (1988); V. K. Mesentsev, S. K. Turitsyn, Opt. Lett. 17, 1497 (1992); X. D. Cao, C. J. McKinstrie, J. Opt. Soc. Am. B 10, 1202 (1993).
[CrossRef] [PubMed]

Di Porto, P.

E. Caglioti, B. Crosignani, P. Di Porto, Phys. Rev. A 38, 4036 (1988); V. K. Mesentsev, S. K. Turitsyn, Opt. Lett. 17, 1497 (1992); X. D. Cao, C. J. McKinstrie, J. Opt. Soc. Am. B 10, 1202 (1993).
[CrossRef] [PubMed]

Doran, N. J.

Islam, M. N.

Kivshar, Yu. S.

Kruskal, M. D.

H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58, 747 (1987).
[CrossRef] [PubMed]

Menyuk, C. R.

Satsuma, J.

J. Satsuma, N. Yajima, Suppl. Prog. Theor. Phys. 55, 284 (1974).
[CrossRef]

Segur, H.

H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58, 747 (1987).
[CrossRef] [PubMed]

Wood, D.

Yajima, N.

J. Satsuma, N. Yajima, Suppl. Prog. Theor. Phys. 55, 284 (1974).
[CrossRef]

IEEE J. Quantum Electron.

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

E. Caglioti, B. Crosignani, P. Di Porto, Phys. Rev. A 38, 4036 (1988); V. K. Mesentsev, S. K. Turitsyn, Opt. Lett. 17, 1497 (1992); X. D. Cao, C. J. McKinstrie, J. Opt. Soc. Am. B 10, 1202 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58, 747 (1987).
[CrossRef] [PubMed]

Suppl. Prog. Theor. Phys.

J. Satsuma, N. Yajima, Suppl. Prog. Theor. Phys. 55, 284 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: M’s, mirrors; L’s, lenses; MTS, motorized translation stage; BS, beam splitter; PBS’s, polarizing beam splitters; Bi, birefringent; λ/2’s, half-wave plates; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Numerical results for δ = 1.17. Dotted–dashed curves, a = 2.40; solid curves, a = 2.45; dashed curves, a = 2.50. (a) ωc(z), (b) tp(z).

Fig. 3
Fig. 3

Numerical results for the fiber output with the experimental parameters: (a) pulse shape, (b) autocorrelation trace, (c) spectrum.

Fig. 4
Fig. 4

Experimental results: (a) output autocorrelation trace, (b) output spectrum. The wavelength shift is measured from the center wavelength of the input pulse (1614.5 nm).

Fig. 5
Fig. 5

Numerical results for ωc(z): (a) δ = 0.50, a = 1.30; (b) δ = 2.00, a = 4.35.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i ( u z + δ u t ) + 1 2 2 u t 2 + ( u 2 + 2 3 v 2 ) u = 0 ,
i ( v z - δ v t ) + 1 2 2 v t 2 + ( 2 3 u 2 + v 2 ) v = 0 ,
u ( 0 , t ) = v ( 0 , t ) = a 2 sech ( t ) .

Metrics