Abstract

The crystal structure, refractive indices, and phase-matching conditions for a new nonlinear optical material, l-histidine tetrafluoroborate (HFB), are reported. HFB grows readily, displays favorable mechanical characteristics, and has adequate birefringence to permit phase-matched parametric processes over much of its transparency range (250 nm to 1300 nm). The phase-matching loci and angular sensitivity for second-harmonic generation of 1064-nm light in single crystals of HFB were measured. The effective nonlinearity for HFB is comparable with that of β-barium borate (~2 pm/V), and its angular sensitivity [δk)/δθ] is somewhat smaller.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. O. Marcy, L. F. Warren, M. S. Webb, C. A. Ebbers, S. P. Velsko, G. C. Kennedy, C. C. Catella, Appl. Opt. 31, 5051 (1992).
    [CrossRef] [PubMed]
  2. L. F. Warren, in Electronic Materials—Our Future, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), pp. 388–396.
  3. G. R. Meredith, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symp. Ser.233 (1982), pp. 27–56.
    [CrossRef]
  4. S. R. Marder, J. E. Sohn, G. D. Stucky, eds., Materials for Nonlinear Optics—Chemical Perspectives, ACS Symp. Ser.455 (1991).
    [CrossRef]
  5. D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987).
    [CrossRef]
  6. L. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng.133 (1987).
  7. F. D. Bloss, in An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.
  8. S. P. Velsko, Opt. Eng. 28, 76 (1989).

1992

1989

S. P. Velsko, Opt. Eng. 28, 76 (1989).

1987

D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987).
[CrossRef]

L. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng.133 (1987).

Bloss, F. D.

F. D. Bloss, in An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.

Catella, C. C.

Davis, L. E.

L. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng.133 (1987).

Ebbers, C. A.

Eimerl, D.

D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987).
[CrossRef]

Kennedy, G. C.

Marcy, H. O.

Meredith, G. R.

G. R. Meredith, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symp. Ser.233 (1982), pp. 27–56.
[CrossRef]

Velsko, S. P.

Warren, L. F.

H. O. Marcy, L. F. Warren, M. S. Webb, C. A. Ebbers, S. P. Velsko, G. C. Kennedy, C. C. Catella, Appl. Opt. 31, 5051 (1992).
[CrossRef] [PubMed]

L. F. Warren, in Electronic Materials—Our Future, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), pp. 388–396.

Webb, M. S.

Appl. Opt.

IEEE J. Quantum Electron.

D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987).
[CrossRef]

Opt. Eng.

S. P. Velsko, Opt. Eng. 28, 76 (1989).

Proc. Soc. Photo-Opt. Instrum. Eng.

L. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng.133 (1987).

Other

F. D. Bloss, in An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.

L. F. Warren, in Electronic Materials—Our Future, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), pp. 388–396.

G. R. Meredith, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symp. Ser.233 (1982), pp. 27–56.
[CrossRef]

S. R. Marder, J. E. Sohn, G. D. Stucky, eds., Materials for Nonlinear Optics—Chemical Perspectives, ACS Symp. Ser.455 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Unit formula and a projection of the crystal structure for HFB.

Fig. 2
Fig. 2

Wulf net projection showing the measured and calculated phase-matching loci for HFB for Type I PM (circles) and Type II PM (crosses). The solid curves were calculated with Eq. (1).

Fig. 3
Fig. 3

Measurements of (a) the PM loci, (b) the angular sensitivities, and (c) the intensity dependences for HFB. Data are shown for Type I (circles) and Type II (triangles) from all four quandrants. The solid curves in (a) were calculated with Eq. (1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n i 2 = a i + b i λ 2 - c i - d i λ 2 ,             i = α , β , γ ,
d eff sample = n ω sample n ω KDP ( n 2 ω sample I 2 ω samble n 2 ω KDP I 2 ω KDP ) 1 / 2 ( L KDP L samble ) d eff KDP ,

Metrics