Abstract

The double phase-conjugate mirror (DPCM) is a stimulated four-wave mixing effect, mediated by either a χ3 mechanism or a photorefractive effect. The type of grating that operates in the DPCM can be a transmission or reflection grating, depending on the wave-mixing configuration. Any combination of nonlinearity and grating geometry is possible, so that four general DPCM classes emerge. An analytic solution of the last unsolved class, the photorefractive reflection DPCM, is presented. With these results, general observations concerning the four categories of double phase conjugation are made. An important conclusion is that the type of grating geometry and its associated boundary conditions dictate many of the basic features of the DPCM, regardless of the nonlinearity involved.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986); S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 12, 114 (1987).
    [CrossRef] [PubMed]
  2. R. W. Eason, A. M. C. Smout, Opt. Lett. 11, 51 (1987).
    [CrossRef]
  3. B. Fischer, S. Sternklar, S. Weiss, IEEE J. Quantum Electon. 25, 50 (1989), and references therein.
    [CrossRef]
  4. L. E. Adams, R. S. Bondurant, Opt. Lett. 18, 226 (1993).
    [CrossRef] [PubMed]
  5. S. Sternklar, Opt. Lett. 17, 1403 (1992).S. Sternklar, Opt. Lett. 17, 1731 (1992).
    [CrossRef] [PubMed]
  6. M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  7. C. Gu, P. Yeh, Opt. Lett. 16, 1572 (1991).
    [CrossRef] [PubMed]
  8. W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. 2.
  9. R. Saxena, P. Yeh, Proc. Soc. Photo-Opt. Instrum. Eng. 1060, 74 (1989).
  10. Sample BT 79D, obtained on loan from Hughes Research Laboratories.
  11. B. Fischer, S. Sternklar, Appl. Phys. Lett. 51, 74 (1987).
    [CrossRef]
  12. B. Fischer, S. Weiss, S. Sternklar, Appl. Phys. Lett. 50, 483 (1987).
    [CrossRef]
  13. T. Honda, T. Yamashita, H. Matsumoto, Opt. Commun. 103, 434 (1993).
    [CrossRef]

1993 (2)

L. E. Adams, R. S. Bondurant, Opt. Lett. 18, 226 (1993).
[CrossRef] [PubMed]

T. Honda, T. Yamashita, H. Matsumoto, Opt. Commun. 103, 434 (1993).
[CrossRef]

1992 (1)

1991 (1)

1989 (2)

R. Saxena, P. Yeh, Proc. Soc. Photo-Opt. Instrum. Eng. 1060, 74 (1989).

B. Fischer, S. Sternklar, S. Weiss, IEEE J. Quantum Electon. 25, 50 (1989), and references therein.
[CrossRef]

1987 (3)

B. Fischer, S. Sternklar, Appl. Phys. Lett. 51, 74 (1987).
[CrossRef]

B. Fischer, S. Weiss, S. Sternklar, Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

R. W. Eason, A. M. C. Smout, Opt. Lett. 11, 51 (1987).
[CrossRef]

1986 (1)

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Adams, L. E.

Bondurant, R. S.

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Eason, R. W.

Fischer, B.

B. Fischer, S. Sternklar, S. Weiss, IEEE J. Quantum Electon. 25, 50 (1989), and references therein.
[CrossRef]

B. Fischer, S. Sternklar, Appl. Phys. Lett. 51, 74 (1987).
[CrossRef]

B. Fischer, S. Weiss, S. Sternklar, Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986); S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 12, 114 (1987).
[CrossRef] [PubMed]

M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Gu, C.

Honda, T.

T. Honda, T. Yamashita, H. Matsumoto, Opt. Commun. 103, 434 (1993).
[CrossRef]

Kaiser, W.

W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. 2.

Maier, M.

W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. 2.

Matsumoto, H.

T. Honda, T. Yamashita, H. Matsumoto, Opt. Commun. 103, 434 (1993).
[CrossRef]

Saxena, R.

R. Saxena, P. Yeh, Proc. Soc. Photo-Opt. Instrum. Eng. 1060, 74 (1989).

Segev, M.

Smout, A. M. C.

Sternklar, S.

S. Sternklar, Opt. Lett. 17, 1403 (1992).S. Sternklar, Opt. Lett. 17, 1731 (1992).
[CrossRef] [PubMed]

B. Fischer, S. Sternklar, S. Weiss, IEEE J. Quantum Electon. 25, 50 (1989), and references therein.
[CrossRef]

B. Fischer, S. Sternklar, Appl. Phys. Lett. 51, 74 (1987).
[CrossRef]

B. Fischer, S. Weiss, S. Sternklar, Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986); S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 12, 114 (1987).
[CrossRef] [PubMed]

Weiss, S.

B. Fischer, S. Sternklar, S. Weiss, IEEE J. Quantum Electon. 25, 50 (1989), and references therein.
[CrossRef]

B. Fischer, S. Weiss, S. Sternklar, Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986); S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 12, 114 (1987).
[CrossRef] [PubMed]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yamashita, T.

T. Honda, T. Yamashita, H. Matsumoto, Opt. Commun. 103, 434 (1993).
[CrossRef]

Yariv, Y.

M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yeh, P.

C. Gu, P. Yeh, Opt. Lett. 16, 1572 (1991).
[CrossRef] [PubMed]

R. Saxena, P. Yeh, Proc. Soc. Photo-Opt. Instrum. Eng. 1060, 74 (1989).

Appl. Phys. Lett. (2)

B. Fischer, S. Sternklar, Appl. Phys. Lett. 51, 74 (1987).
[CrossRef]

B. Fischer, S. Weiss, S. Sternklar, Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

IEEE J. Quantum Electon. (1)

B. Fischer, S. Sternklar, S. Weiss, IEEE J. Quantum Electon. 25, 50 (1989), and references therein.
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, Y. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Opt. Commun. (1)

T. Honda, T. Yamashita, H. Matsumoto, Opt. Commun. 103, 434 (1993).
[CrossRef]

Opt. Lett. (5)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. Saxena, P. Yeh, Proc. Soc. Photo-Opt. Instrum. Eng. 1060, 74 (1989).

Other (2)

Sample BT 79D, obtained on loan from Hughes Research Laboratories.

W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Reflection-grating DPCM, (b) transmission-grating DPCM.

Fig. 2
Fig. 2

Transmittance versus coupling-strength magnitude for the four DPCM classes: PR transmission,1,6 non-PR transmission,10 PR reflection (this work), and non-PR reflection.5

Fig. 3
Fig. 3

Schematic of the PR reflection DPCM experiment: R, reflecting plastic used to externally seed the DPCM; S, screen; W, wedge. The angle ψ between the input beams is approximately 4 mrad.

Tables (1)

Tables Icon

Table 1 Classes of Double Phase Conjugation

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A 1 / z = ( γ / 2 I 0 ) g A 4 ,
A 2 / z = ( γ / 2 I 0 ) g * A 3 ,
A 3 / z = ( γ / 2 I 0 ) g A 2 ,
A 4 / z = ( γ / 2 I 0 ) g * A 1 ,
c 1 = I 1 - I 4 ,
c 2 = I 2 - I 3 ,
d 1 = A 1 A 2 - A 3 A 4 ,
A 12 / z = ( γ / 2 I 0 ) ( A 12 N + A 12 2 d 1 * - d 1 ) ,
A 34 / z = ( γ / 2 I 0 ) ( A 34 N + A 34 2 d 1 * - d 1 ) ,
d 1 = 0.
I 12 / z = ( γ / I 0 ) N I 12 ,
I 34 / z = ( γ / I 0 ) N I 34 ,
T / z = γ T ( 1 - T ) / ( 1 + T ) ,
T ( z = 0 ) = I 1 ( 0 ) / I 4 ( 0 ) = I 3 ( 0 ) / I 2 ( 0 ) = exp ( - D ) ,
T = [ 1 + 2 S - ( 1 + 4 S ) 1 / 2 ] / 2 S ,
g refl = I 0 exp ( - D / 2 ) .
g trans = ( 1 + t ) ( I 0 / 2 ) exp ( - D / 2 ) .

Metrics