Abstract

Silicate-based glasses containing approximately 10% by weight boron or more have been observed to exhibit selective etching in hydrofluoric acid solution after direct exposure to intense visible laser light at 532 nm. The observation of a ring-shaped etch pattern in samples exposed to solid Gaussian beams suggests that selective etching is related to a charge-diffusion process rather than to local light-induced defect generation. The technique has so far resulted in the maskless production of micrometer-scale features with submicrometer depths.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Foturan, intricate-shaped glass and glass–ceramic components, product information no. 4844/2e (Schott Corporation Technical Glass Division, Yonkers, N.Y.).
  2. G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.
  3. T. W. O’Keeffe, R. M. Handy, Solid-State Electron. 11, 261 (1968).
    [CrossRef]
  4. N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986), p. 31.
  5. E. E. Uzgiris, R. L. Fleischer, Phys. Rev. A 7, 734 (1973).
    [CrossRef]
  6. T. J. Driscoll, N. M. Lawandy, J. Opt. Soc. Am. B 11, 355 (1994).
    [CrossRef]
  7. D. Z. Anderson, V. Mizrahi, J. E. Sipe, Opt. Lett. 16, 796 (1991).
    [CrossRef] [PubMed]
  8. M. J. Weber, ed., CRC Handbook of Laser Science and Technology (CRC, Boca Raton, Fla., 1986), Vol. III, Part I, Sec. 1.2, p. 243.

1994

1991

1973

E. E. Uzgiris, R. L. Fleischer, Phys. Rev. A 7, 734 (1973).
[CrossRef]

1968

T. W. O’Keeffe, R. M. Handy, Solid-State Electron. 11, 261 (1968).
[CrossRef]

Anderson, D. Z.

Arnold, G. W.

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

Bansal, N. P.

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986), p. 31.

Battaglin, G.

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

Boscolo-Boscoletto, A.

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

Caccavale, F.

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

De Marchi, G.

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

Doremus, R. H.

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986), p. 31.

Driscoll, T. J.

Fleischer, R. L.

E. E. Uzgiris, R. L. Fleischer, Phys. Rev. A 7, 734 (1973).
[CrossRef]

Handy, R. M.

T. W. O’Keeffe, R. M. Handy, Solid-State Electron. 11, 261 (1968).
[CrossRef]

Lawandy, N. M.

Mazzoldi, P.

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

Mizrahi, V.

O’Keeffe, T. W.

T. W. O’Keeffe, R. M. Handy, Solid-State Electron. 11, 261 (1968).
[CrossRef]

Sipe, J. E.

Uzgiris, E. E.

E. E. Uzgiris, R. L. Fleischer, Phys. Rev. A 7, 734 (1973).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

E. E. Uzgiris, R. L. Fleischer, Phys. Rev. A 7, 734 (1973).
[CrossRef]

Solid-State Electron.

T. W. O’Keeffe, R. M. Handy, Solid-State Electron. 11, 261 (1968).
[CrossRef]

Other

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986), p. 31.

Foturan, intricate-shaped glass and glass–ceramic components, product information no. 4844/2e (Schott Corporation Technical Glass Division, Yonkers, N.Y.).

G. Battaglin, A. Boscolo-Boscoletto, F. Caccavale, G. De Marchi, P. Mazzoldi, G. W. Arnold, in Modifications Induced by Irradiation of Glasses, P. Mazzoldi, ed. (Elsevier, New York, 1992), p. 91.

M. J. Weber, ed., CRC Handbook of Laser Science and Technology (CRC, Boca Raton, Fla., 1986), Vol. III, Part I, Sec. 1.2, p. 243.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Input far-field beam profile used to optically encode glass samples.

Fig. 2
Fig. 2

Atomic-force microscopy image of the etch pattern in BK7 glass obtained after irradiation for 10 min with a solid Gaussian beam from a frequency-doubled, mode-locked, and Q-switched laser output at 532 nm (Pave = 300 mW).

Fig. 3
Fig. 3

Atomic-force microscopy image and topographic profile of a groove selectively etched in SK5.

Fig. 4
Fig. 4

Diagrammatic representation of the electron–hole photogeneration, diffusion, and trapping processes that result in an electric field. This model assumes very low hole mobility (virtually stationary) compared with that of electrons ejected above the glass mobility edge.

Tables (1)

Tables Icon

Table 1 Approximate Composition (in wt. %) of the Different Schott Glasses Used in This Studya

Metrics