Abstract

We report what is to our knowledge the first experimental demonstration of a continuous coherent transient optical processor. A 13-bit pattern was stored as a spectral population grating in the Eu3+-ion ground state in a Eu3+:Y2SiO5 crystal. A 3120-bit data stream was processed continuously, yielding a cross-correlation signal that agreed well with theory. The data stream’s duration exceeded both the absorbing transition’s homogenous transverse dephasing time and upper-state lifetime. This experiment showed that by permanently storing the pattern as a population grating in the absorber’s ground state, coherent transient optical devices provide continuous, real-time data processing capability.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
    [CrossRef]
  2. W. Babbitt, J. Bell, Appl. Opt. 33, 1538 (1994).
    [CrossRef] [PubMed]
  3. W. R. Babbitt, A. Lezama, T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
    [CrossRef]
  4. W. E. Moerner, ed., Persistent Spectral Holeburning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  5. R. Yano, M. Mitsunaga, N. Uesugi, Opt. Lett. 16, 1884 (1991).
    [CrossRef] [PubMed]
  6. R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
    [CrossRef] [PubMed]
  7. M. Mitsunaga, K. Kubodera, H. Kanbe, Opt. Lett. 11, 339 (1986).
    [CrossRef] [PubMed]
  8. R. Yano, M. Mitsunaga, N. Uesugi, J. Opt. Soc. Am. B 9, 992 (1992).
    [CrossRef]
  9. J. Hall, T. Hänsch, Opt. Lett. 9, 502 (1984).
    [CrossRef] [PubMed]
  10. Preliminary results were reported:M. Zhu, C. M. Jefferson, W. R. Babbitt, in Spectral Hole-Burning and Related Spectroscopies: Science and Applications, Vol. 15 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 392.

1994 (2)

W. Babbitt, J. Bell, Appl. Opt. 33, 1538 (1994).
[CrossRef] [PubMed]

R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

1989 (1)

W. R. Babbitt, A. Lezama, T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
[CrossRef]

1986 (1)

1984 (2)

J. Hall, T. Hänsch, Opt. Lett. 9, 502 (1984).
[CrossRef] [PubMed]

Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Babbitt, W.

W. Babbitt, J. Bell, Appl. Opt. 33, 1538 (1994).
[CrossRef] [PubMed]

Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Babbitt, W. R.

W. R. Babbitt, A. Lezama, T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
[CrossRef]

Preliminary results were reported:M. Zhu, C. M. Jefferson, W. R. Babbitt, in Spectral Hole-Burning and Related Spectroscopies: Science and Applications, Vol. 15 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 392.

Bai, Y.

Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Bell, J.

Carlson, N.

Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Cone, R.

R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Equall, R.

R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Hall, J.

Hänsch, T.

Jefferson, C. M.

Preliminary results were reported:M. Zhu, C. M. Jefferson, W. R. Babbitt, in Spectral Hole-Burning and Related Spectroscopies: Science and Applications, Vol. 15 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 392.

Kanbe, H.

Kubodera, K.

Lezama, A.

W. R. Babbitt, A. Lezama, T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
[CrossRef]

Macfarlane, R.

R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Mitsunaga, M.

Mossberg, T.

Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Mossberg, T. W.

W. R. Babbitt, A. Lezama, T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
[CrossRef]

Sun, Y.

R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Uesugi, N.

Yano, R.

Zhu, M.

Preliminary results were reported:M. Zhu, C. M. Jefferson, W. R. Babbitt, in Spectral Hole-Burning and Related Spectroscopies: Science and Applications, Vol. 15 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 392.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Bai, W. Babbitt, N. Carlson, T. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. B (1)

W. R. Babbitt, A. Lezama, T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

R. Equall, Y. Sun, R. Cone, R. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Other (2)

W. E. Moerner, ed., Persistent Spectral Holeburning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Preliminary results were reported:M. Zhu, C. M. Jefferson, W. R. Babbitt, in Spectral Hole-Burning and Related Spectroscopies: Science and Applications, Vol. 15 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 392.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Input waveforms for the experiment. Only the first four 13-bit segments of the 240-segment-long data stream are fully shown. (a) Powers (not to scale) of the pattern, brief pulse, and data stream. (b) Optical phase of the pattern and data stream. See text for details.

Fig. 2
Fig. 2

Schematic of the experimental setup. B.B., beam blocker; B.S.’s, beam splitters; M’s, mirrors. The crystal is mounted in a liquid-helium cryostat (not shown).

Fig. 3
Fig. 3

Detected single-shot (not averaged) output correlation signal. The signal decays only slightly over its duration, approximately 3.12 ms.

Fig. 4
Fig. 4

Same single-shot signal shown in Fig. 3, except that it is broken into five successive 624-μs traces (lower five traces) for comparison with the output signal calculated by relation (1) (the top trace). The vertical scale (signal power) is the same for all five traces of the output signal. The tick marks are separated by 13 μs (the segment length). The calculated signal represents the correlation of the pattern P with a fifth of the data stream.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E signal ( t ) d τ 1 d τ 2 × E pattern ( τ 1 ) E brief ( τ 2 ) E data ( t + τ 1 - τ 2 ) ,

Metrics