Abstract

The spatial spectrum of angular phase matching for photorefractive devices that use orthogonally polarized reading and writing beams may be enhanced if the images are recorded at angles where the ordinary and extraordinary cross sections of the index ellipsoid have equal curvatures. Applications include holographic storage, phased-array radar processors, and achromatic photorefractive devices. We show that for holographic recording in lithium niobate the maximum wavelength separation between writing and reading beams is approximately 50 nm for writing at 500 nm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cronin-Golomb, C. Lin, H. Hong, A. M. Biernacki, Opt. Lett. 13, 324 (1988).
    [CrossRef] [PubMed]
  2. R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).
  3. M. H. Garrett, M. B. Klein, J. P. Wilde, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 309.
  4. M. Cronin-Golomb, Opt. Lett. 14, 1297 (1989).
    [CrossRef] [PubMed]
  5. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, M. Cronin-Golomb, Opt. Lett. 16, 1984 (1991).
    [CrossRef] [PubMed]
  6. H.-C. Kulich, Appl. Opt. 30, 2850 (1991).
    [CrossRef] [PubMed]
  7. D. Psaltis, F. Mok, H.-Y. S. Li, Opt. Lett. 19, 210 (1994).
    [CrossRef] [PubMed]
  8. M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991), p. 85.
  9. I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  10. L.-J. Cheng, D. T. H. Liu, Int. J. Opt. Comput. 2, 111 (1991).
  11. A. M. Prokhorov, Yu. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990), p. 201.

1994

R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).

D. Psaltis, F. Mok, H.-Y. S. Li, Opt. Lett. 19, 210 (1994).
[CrossRef] [PubMed]

1991

1989

1988

1974

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Acioli, L. H.

Biernacki, A. M.

Chang, I. C.

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Chen, B. S.

Cheng, L.-J.

L.-J. Cheng, D. T. H. Liu, Int. J. Opt. Comput. 2, 111 (1991).

Cronin-Golomb, M.

Fujimoto, J. G.

Garrett, M. H.

M. H. Garrett, M. B. Klein, J. P. Wilde, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 309.

Hong, H.

Ippen, E. P.

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991), p. 85.

Klein, M. B.

M. H. Garrett, M. B. Klein, J. P. Wilde, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 309.

Kong, H.

Kulich, H.-C.

Kuzminov, Yu. S.

A. M. Prokhorov, Yu. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990), p. 201.

Li, H.-Y. S.

Lin, C.

Liu, D. T. H.

L.-J. Cheng, D. T. H. Liu, Int. J. Opt. Comput. 2, 111 (1991).

Mok, F.

Petrov, M. P.

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991), p. 85.

Prokhorov, A. M.

A. M. Prokhorov, Yu. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990), p. 201.

Psaltis, D.

Sarto, A. W.

R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991), p. 85.

Ulman, M.

Wagner, K.

R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).

Weaver, S.

R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).

Weverka, R. T.

R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).

Wilde, J. P.

M. H. Garrett, M. B. Klein, J. P. Wilde, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 309.

Appl. Opt.

Appl. Phys. Lett.

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Int. J. Opt. Comput.

L.-J. Cheng, D. T. H. Liu, Int. J. Opt. Comput. 2, 111 (1991).

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

R. T. Weverka, K. Wagner, A. W. Sarto, S. Weaver, Proc. Soc. Photo-Opt. Instrum. Eng. 2155, 336 (1994).

Other

M. H. Garrett, M. B. Klein, J. P. Wilde, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 309.

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991), p. 85.

A. M. Prokhorov, Yu. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990), p. 201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Wave-vector diagram for a hologram of an image including wave vectors kwi recorded with reference beam wave vector kwr. When the image is read with a longer-wavelength reference krr, only part of the image is Bragg matched for reconstruction at wave vector kri. All beams have ordinary polarization. (b) When the hologram (see text) is read with extraordinary polarization, a wider range of wave vectors of the recorded hologram is Bragg matched.

Fig. 2
Fig. 2

The black band shows the wavelength range for which birefringent phase matching is achievable in lithium niobate. For example, image and reference angles may be found to phase match a hologram written at 500 nm with ordinary polarization for readout with extraordinary polarization between 465 and 520 nm. Each wavelength pair will have different reading and writing image and reference angles.

Fig. 3
Fig. 3

Bandwidth of phase-matchable image recorded with ordinary polarization at 514.5 nm for readout with extraordinary polarization. The crystal length is 5 mm. Note the noncritical phase matching near the ends of the readout wavelength range.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x 2 n e 2 ( λ e ) + y 2 n o 2 ( λ e ) = k e 2 ,
c ( x ) = d 2 y d x 2 [ 1 + ( d y d x ) 2 ] 3 / 2 .
c e = - n o ( λ e ) k e n e 2 ( λ e ) { 1 - [ 1 - n o 2 ( λ e ) n e 2 ( λ e ) ] V } 3 / 2 ,
V = 1 - [ k o k e n o ( λ e ) n o ( λ o ) n e 2 ( λ e ) ] 2 / 3 1 - [ n o ( λ e ) n e ( λ e ) ] 2 .
n e 2 ( λ e ) n o ( λ e ) n o ( λ o ) < λ e λ o < n o 2 ( λ e ) n o ( λ o ) n e ( λ e ) .
d θ = ( 1 λ o L n o ( λ o ) [ n o ( λ e ) λ e ] 2 n o ( λ e ) n e ( λ e ) { ( 1 - a ) [ a n o ( λ e ) 2 n e ( λ e ) 2 ] } 1 / 2 ) 1 / 3 ,
a = [ λ e λ o n e ( λ e ) n o ( λ o ) n e ( λ e ) 2 ] 2 / 3 .

Metrics