Abstract

Holographic gratings are written in photorefractive Sr0.61Ba0.39Nb2O6 crystals by two interfering light beams. Angular-dependent readout of the holograms shows that applying an external electric field to the crystal produces a pronounced tilting of the holograms. The results are in good agreement with theoretical predictions considering self-diffraction of the recording beams.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
    [CrossRef]
  3. J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
    [CrossRef]
  4. S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
    [CrossRef]
  5. R. De Vré, M. Jeganathan, J. P. Wilde, L. Hesselink, Opt. Lett. 19, 910 (1994).
    [CrossRef] [PubMed]
  6. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  7. K. Buse, K. H. Ringhofer, Appl. Phys. A 57, 161 (1993).
    [CrossRef]
  8. R. A. Vazquez, R. R. Neurgaonkar, M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
    [CrossRef]
  9. S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
    [CrossRef]
  10. J. Feinberg, J. Opt. Soc. Am. 72, 46 (1982).
    [CrossRef]

1994 (2)

1993 (1)

K. Buse, K. H. Ringhofer, Appl. Phys. A 57, 161 (1993).
[CrossRef]

1992 (1)

1987 (1)

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

1982 (1)

1979 (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Buse, K.

K. Buse, K. H. Ringhofer, Appl. Phys. A 57, 161 (1993).
[CrossRef]

De Vré, R.

Ducharme, S.

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Ewbank, M. D.

Feinberg, J.

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

J. Feinberg, J. Opt. Soc. Am. 72, 46 (1982).
[CrossRef]

Heaton, J. M.

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

Hesselink, L.

Jeganathan, M.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

Mills, P. A.

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

Neurgaonkar, R. R.

R. A. Vazquez, R. R. Neurgaonkar, M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
[CrossRef]

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

Paige, E. G. S.

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

Ringhofer, K. H.

K. Buse, K. H. Ringhofer, Appl. Phys. A 57, 161 (1993).
[CrossRef]

Selviah, D. R.

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Solymar, L.

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

Song, Z. H.

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

Tao, S.

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Vazquez, R. A.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

Wilde, J. P.

Wilson, T.

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

Appl. Phys. A (1)

K. Buse, K. H. Ringhofer, Appl. Phys. A 57, 161 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymar, T. Wilson, Opt. Acta 31, 885 (1979).
[CrossRef]

Opt. Commun. (1)

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Opt. Lett. (1)

Other (1)

P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diffraction efficiency η versus Δθ, the difference between the Bragg angle of the untilted grating and the readout angle, for different externally applied electric fields. The writing beams are ordinarily polarized, and their intensity ratio is approximately 1000:1.

Fig. 2
Fig. 2

Bragg angle change ΔθBragg versus externally applied electric field E for different intensity ratios and polarizations of the writing beams: (a) ordinary, (b) extraordinary. The symbols correspond to the measured data, and the solid lines are linear fits to the data (for details see text).

Fig. 3
Fig. 3

Time evolution of Bragg angle change ΔθBragg. The writing beams are ordinarily polarized, their intensity ratio is approximately 1000:1, and an external electric field of 4 kV cm−1 is applied.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ ( z ) = Φ 0 + cotan  Φ g 2 × ln { ( 1 + β 2 ) 2 exp ( - 2 z γ sin  Φ g ) [ 1 + β 2 exp ( - 2 z γ sin  Φ g ) ] 2 } ,
γ = π n 3 λ 0 cos  θ | r E sc m | ,
Δ θ Bragg = | n 2 r 2 sin ( 2 θ ) E sc m cos  Φ g | .
Δ θ Bragg = | n 2 r 2 sin ( 2 θ ) E | .

Metrics