Abstract

The stimulated Raman gain effect in planar dielectric waveguides is analyzed for the study of thin layers. Calculations show high gain factors and predict the possibility of detecting monolayers. Compared with those for methods based on reflection, the gain can be 4 orders of magnitude higher for a monolayer of benzene. It is concluded that waveguide stimulated Raman gain spectroscopy is a promising technique for the study of thin layers.

© 1995 Optical Society of America

Full Article  |  PDF Article

Corrections

Johannes Sake Kanger, Cees Otto, and Jan Greve, "Stimulated Raman gain scattering in thin planar dielectric waveguides: erratum," Opt. Lett. 21, 621-621 (1996)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-21-8-621

References

  • View by:
  • |
  • |
  • |

  1. J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.
  2. G. I. Stegeman, R. Fortenberry, C. Karaguleff, R. Moshrefzadeh, W. M. Hetherington, N. E. Van Wyck, J. E. Sipe, Opt. Lett. 8, 295 (1983).
    [CrossRef] [PubMed]
  3. W. M. Hetherington, N. E. van Wyck, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Opt. Lett. 9, 88 (1984).
    [CrossRef]
  4. W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).
  5. W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
    [CrossRef]
  6. W. M. K. P. Wijekoon, W. M. Hetherington, J. Am. Chem. Soc. 115, 2882 (1993).
    [CrossRef]
  7. W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
    [CrossRef]
  8. T. G. Spiro, Raman Spectra and the Conformations of Biological Macromolecules, Vol. 1 of Biological Applications of Raman Spectroscopy (Wiley, New York, 1987).
  9. A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. LT-5, 660 (1987).
    [CrossRef]
  10. J. E. Sipe, G. I. Stegeman, J. Opt. Soc. Am. 69, 1676 (1979).
    [CrossRef]
  11. G. I. Stegeman, C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
    [CrossRef]
  12. G. L. Eesley, Coherent Raman Spectroscopy, 1st ed. (Pergamon, Oxford, 1981), Chap. 3, p. 51.
  13. P. D. Maker, R. Terhune, Phys. Rev. A 137, 801 (1965).
  14. B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
    [CrossRef]

1993 (3)

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

W. M. K. P. Wijekoon, W. M. Hetherington, J. Am. Chem. Soc. 115, 2882 (1993).
[CrossRef]

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
[CrossRef]

1987 (1)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

1986 (1)

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).

1985 (1)

G. I. Stegeman, C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

1984 (1)

1983 (1)

1980 (1)

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

1979 (1)

1965 (1)

P. D. Maker, R. Terhune, Phys. Rev. A 137, 801 (1965).

Bethea, C. G.

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

de Boeij, W. P.

Eesley, G. L.

G. L. Eesley, Coherent Raman Spectroscopy, 1st ed. (Pergamon, Oxford, 1981), Chap. 3, p. 51.

Fortenberry, R.

Fortenberry, R. M.

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).

W. M. Hetherington, N. E. van Wyck, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Opt. Lett. 9, 88 (1984).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

Greve, J.

Hetherington, W. M.

W. M. K. P. Wijekoon, W. M. Hetherington, J. Am. Chem. Soc. 115, 2882 (1993).
[CrossRef]

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).

W. M. Hetherington, N. E. van Wyck, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Opt. Lett. 9, 88 (1984).
[CrossRef]

G. I. Stegeman, R. Fortenberry, C. Karaguleff, R. Moshrefzadeh, W. M. Hetherington, N. E. Van Wyck, J. E. Sipe, Opt. Lett. 8, 295 (1983).
[CrossRef] [PubMed]

Ho, Z. Z.

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).

Kanger, J. S.

Karaguleff, C.

Koenig, E. W.

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).

W. M. Hetherington, N. E. van Wyck, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Opt. Lett. 9, 88 (1984).
[CrossRef]

Levine, B. F.

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

Lucassen, G. W.

Maker, P. D.

P. D. Maker, R. Terhune, Phys. Rev. A 137, 801 (1965).

Moshrefzadeh, R.

Otto, C.

Rabolt, J. F.

J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.

Seaton, C. T.

G. I. Stegeman, C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

Sipe, J. E.

Spiro, T. G.

T. G. Spiro, Raman Spectra and the Conformations of Biological Macromolecules, Vol. 1 of Biological Applications of Raman Spectroscopy (Wiley, New York, 1987).

Stegeman, G. I.

Swalen, J. D.

J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.

Terhune, R.

P. D. Maker, R. Terhune, Phys. Rev. A 137, 801 (1965).

Thyagarajan, K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

van Wyck, N. E.

Wijekoon, W. M. K. P.

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

W. M. K. P. Wijekoon, W. M. Hetherington, J. Am. Chem. Soc. 115, 2882 (1993).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

J. Am. Chem. Soc. (1)

W. M. K. P. Wijekoon, W. M. Hetherington, J. Am. Chem. Soc. 115, 2882 (1993).
[CrossRef]

J. Appl. Phys. (1)

G. I. Stegeman, C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

J. Lightwave Technol. (1)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

P. D. Maker, R. Terhune, Phys. Rev. A 137, 801 (1965).

Proc. Soc. Photo- Opt. Instrum. Eng. (1)

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, G. I. Stegeman, R. M. Fortenberry, Proc. Soc. Photo- Opt. Instrum. Eng. 620, 102 (1986).

Other (3)

J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.

T. G. Spiro, Raman Spectra and the Conformations of Biological Macromolecules, Vol. 1 of Biological Applications of Raman Spectroscopy (Wiley, New York, 1987).

G. L. Eesley, Coherent Raman Spectroscopy, 1st ed. (Pergamon, Oxford, 1981), Chap. 3, p. 51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Waveguide configuration consisting of cladding, film, and substrate. The pump and the Stokes beams are coupled into the waveguide by means of a prism to excite specific modes. The mode distribution functions of a TE0 mode and a TE1 mode are also shown.

Fig. 2
Fig. 2

Gain coefficient G0 as a function of the polystyrene layer thickness. The pump power in this case is 10 W, and the interaction length L = 1 cm.

Fig. 3
Fig. 3

Gain coefficient G0 (solid curves) from a monolayer of benzene as a function of the film thickness with a fixed pump intensity of 10 MW/cm2 at the surface. Three different mode combinations are shown: l, m = 0 (curve a), l, m = 1 (curve b), and l, m = 2 (curve c). The dashed curves give the pump power needed to produce these intensities. The interaction length L = 1 cm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E k = 1 2 e y exp [ j ( ω t - β k x ) ] f k ( z ) a k ( x ) + c.c. ,
P ( 3 ) = χ ¯ ¯ ( 3 ) ( ω Stokes ; ω pump , ω Stokes , - ω pump ) : E pump · E Stokes · E pump * .
P ( 3 ) ( z , x ) = χ ¯ ¯ ( 3 ) ( z ) : E 0 , pump k ( z ) E 0 , Stokes l ( z ) E 0 , pump k * ( z ) × [ a pump k ( x ) ] 2 [ a Stokes l ( x ) ] exp ( - j β Stokes l x ) ,
E 0 , pump k ( z ) = 1 2 e y exp [ j ( ω pump t ) ] f pump k ( z ) ,
E 0 , Stokes l ( z ) = 1 2 e y exp [ j ( ω Stokes t ) ] f Stokes l ( z ) .
d d x ( a Stokes l ) = - j ω Stokes 4 exp ( j β Stokes l x ) × - P ( 3 ) ( z , x ) · [ E 0 , Stokes l ( z ) ] * d z .
d d x ( a Stokes l ) = ω Stokes 4 [ a pump k ( x ) ] 2 [ a Stokes l ( x ) ] F k l ,
F k l = - - j χ y y y y ( 3 ) ( z ) [ f pump k ( z ) ] 2 [ f Stokes l ( z ) ] 2 d z
a Stokes l ( L ) = a Stokes l ( 0 ) exp [ ( ω Stokes / 4 ) ( a pump k ) 2 F k l L ] .
P Stokes l = P Stokes l ( 0 ) exp [ ( ω Stokes / 2 ) P pump k Re ( F k l ) L / H ] = P Stokes l ( 0 ) exp ( g L ) ,
G 0 = g L = ( ω Stokes / 2 ) Re ( F k l ) P pump k L / H .

Metrics