Abstract

A significantly simplified type of antiresonant reflecting optical waveguide (ARROW) laser, which is also immune to gain spatial hole burning, is proposed for achieving high-power, single-spatial-mode operation. Modal calculations, which include two-dimensional analysis, confirm strong intermodal discrimination (12–16 cm−1) between the fundamental and the first-order lateral modes. Above-threshold analysis shows that gain spatial hole burning has a negligible effect on the performance of this new type of ARROW device, which in turn dramatically enhances its single-mode, high-power capability by comparison with the conventional ARROW laser.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
    [CrossRef]
  2. T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
    [CrossRef]
  3. L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
    [CrossRef]
  4. L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
    [CrossRef]
  5. L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
    [CrossRef]
  6. L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
    [CrossRef]
  7. D. Botez, Proc. Inst. Electr. Eng. Part J 139, 14 (1992).
  8. Note that for the case na1 > nb2 the lateral (fundamental) mode centered in the core is, strictly speaking, of the leaky type. However, because for typical structures the radiation loss is negligible (e.g., for d = 6 μm, s = 1.85 μm, and λ = 0.98 μm, the radiation loss value is 0.004 cm−1), for all practical purposes the mode is guided.
  9. M.-C. Amann, IEEE J. Quantum Electron. QE-22, 1992 (1986).
    [CrossRef]
  10. G. R. Hadley, D. Botez, L. J. Mawst, IEEE J. Quantum Electron. 27, 921 (1991).
    [CrossRef]
  11. P. Yeh, C. Gu, D. Botez, Opt. Lett. 17, 24 (1992).
  12. R. F. Nabiev, P. Yeh, D. Botez, Appl. Phys. Lett. 62, 916 (1993).
    [CrossRef]
  13. R. F. Nabiev, D. Botez, IEEE J. Select. Topics Quantum Electron. 1, 138 (1995).
    [CrossRef]
  14. M. Nomoto, S. Abe, M. Miyagi, Opt. Commun. 108, 243 (1994).
    [CrossRef]
  15. C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
    [CrossRef]

1995 (3)

L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
[CrossRef]

R. F. Nabiev, D. Botez, IEEE J. Select. Topics Quantum Electron. 1, 138 (1995).
[CrossRef]

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

1994 (1)

M. Nomoto, S. Abe, M. Miyagi, Opt. Commun. 108, 243 (1994).
[CrossRef]

1993 (1)

R. F. Nabiev, P. Yeh, D. Botez, Appl. Phys. Lett. 62, 916 (1993).
[CrossRef]

1992 (5)

D. Botez, Proc. Inst. Electr. Eng. Part J 139, 14 (1992).

P. Yeh, C. Gu, D. Botez, Opt. Lett. 17, 24 (1992).

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
[CrossRef]

1991 (1)

G. R. Hadley, D. Botez, L. J. Mawst, IEEE J. Quantum Electron. 27, 921 (1991).
[CrossRef]

1988 (1)

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
[CrossRef]

1987 (1)

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

1986 (1)

M.-C. Amann, IEEE J. Quantum Electron. QE-22, 1992 (1986).
[CrossRef]

Abe, S.

M. Nomoto, S. Abe, M. Miyagi, Opt. Commun. 108, 243 (1994).
[CrossRef]

Amann, M.-C.

M.-C. Amann, IEEE J. Quantum Electron. QE-22, 1992 (1986).
[CrossRef]

Baba, T.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
[CrossRef]

Bhattacharya, A.

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

Botez, D.

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
[CrossRef]

R. F. Nabiev, D. Botez, IEEE J. Select. Topics Quantum Electron. 1, 138 (1995).
[CrossRef]

R. F. Nabiev, P. Yeh, D. Botez, Appl. Phys. Lett. 62, 916 (1993).
[CrossRef]

P. Yeh, C. Gu, D. Botez, Opt. Lett. 17, 24 (1992).

D. Botez, Proc. Inst. Electr. Eng. Part J 139, 14 (1992).

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
[CrossRef]

G. R. Hadley, D. Botez, L. J. Mawst, IEEE J. Quantum Electron. 27, 921 (1991).
[CrossRef]

Boyd, G. D.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

Corvini, P. J.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

Duguay, M. A.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

Gu, C.

P. Yeh, C. Gu, D. Botez, Opt. Lett. 17, 24 (1992).

Hadley, G. R.

G. R. Hadley, D. Botez, L. J. Mawst, IEEE J. Quantum Electron. 27, 921 (1991).
[CrossRef]

Iga, K.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
[CrossRef]

Koch, T. L.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

Kokubun, Y.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
[CrossRef]

Koren, U.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

Mawst, L. J.

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
[CrossRef]

G. R. Hadley, D. Botez, L. J. Mawst, IEEE J. Quantum Electron. 27, 921 (1991).
[CrossRef]

Miyagi, M.

M. Nomoto, S. Abe, M. Miyagi, Opt. Commun. 108, 243 (1994).
[CrossRef]

Nabiev, R. F.

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

R. F. Nabiev, D. Botez, IEEE J. Select. Topics Quantum Electron. 1, 138 (1995).
[CrossRef]

L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
[CrossRef]

R. F. Nabiev, P. Yeh, D. Botez, Appl. Phys. Lett. 62, 916 (1993).
[CrossRef]

Nesnidal, M.

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

Nomoto, M.

M. Nomoto, S. Abe, M. Miyagi, Opt. Commun. 108, 243 (1994).
[CrossRef]

Sakaki, T.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
[CrossRef]

Tu, C.

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
[CrossRef]

Yeh, P.

R. F. Nabiev, P. Yeh, D. Botez, Appl. Phys. Lett. 62, 916 (1993).
[CrossRef]

P. Yeh, C. Gu, D. Botez, Opt. Lett. 17, 24 (1992).

Zmudzinkski, C.

L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
[CrossRef]

Zmudzinski, C.

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
[CrossRef]

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
[CrossRef]

Appl. Phys. Lett. (3)

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Appl. Phys. Lett. 61, 503 (1992).
[CrossRef]

L. J. Mawst, D. Botez, R. F. Nabiev, C. Zmudzinkski, Appl. Phys. Lett. 66, 7 (1995).
[CrossRef]

R. F. Nabiev, P. Yeh, D. Botez, Appl. Phys. Lett. 62, 916 (1993).
[CrossRef]

Electron. Lett. (2)

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, Electron. Lett. 28, 1795 (1992).
[CrossRef]

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, Electron. Lett. 23, 244 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

M.-C. Amann, IEEE J. Quantum Electron. QE-22, 1992 (1986).
[CrossRef]

G. R. Hadley, D. Botez, L. J. Mawst, IEEE J. Quantum Electron. 27, 921 (1991).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (2)

C. Zmudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, R. F. Nabiev, IEEE J. Select. Topics Quantum Electron. 1, 129 (1995).
[CrossRef]

R. F. Nabiev, D. Botez, IEEE J. Select. Topics Quantum Electron. 1, 138 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, IEEE Photon. Technol. Lett. 4, 1204 (1992).
[CrossRef]

J. Lightwave Technol. (1)

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, J. Lightwave Technol. 6, 1440 (1988).
[CrossRef]

Opt. Commun. (1)

M. Nomoto, S. Abe, M. Miyagi, Opt. Commun. 108, 243 (1994).
[CrossRef]

Opt. Lett. (1)

P. Yeh, C. Gu, D. Botez, Opt. Lett. 17, 24 (1992).

Proc. Inst. Electr. Eng. Part J (1)

D. Botez, Proc. Inst. Electr. Eng. Part J 139, 14 (1992).

Other (1)

Note that for the case na1 > nb2 the lateral (fundamental) mode centered in the core is, strictly speaking, of the leaky type. However, because for typical structures the radiation loss is negligible (e.g., for d = 6 μm, s = 1.85 μm, and λ = 0.98 μm, the radiation loss value is 0.004 cm−1), for all practical purposes the mode is guided.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Proposed structure and corresponding effective refractive-index configuration. For λ = 0.98 μm, w = 0.15 μm, h = 0.16 μm, SCH-SQW active region made of a 10-nm-thick InGaAs quantum-well layer, and 100-nm-thick InGaAsP confinement layers, the calculated effective refractive indices are na1 = 3.241, nb1 = 3.29, and nb2 = 3.22. In the cladding regions the solid and dashed curves correspond to the even and odd transverse modes, respectively.

Fig. 2
Fig. 2

Cold-cavity radiation losses for the fundamental (solid curves) and first-order (dashed curves) lateral modes of the structure shown in Fig. 1 (with d = 6 μm) as a function of the width of the cladding region, s, calculated by two-dimensional analysis. The three minima correspond with antiresonances at 3λ/4-, 5λ/4-, and 7λ/4-thick cladding regions

Fig. 3
Fig. 3

(a) Cold-cavity radiation losses versus cladding-region width s for the fundamental (solid curve) and firstorder (dashed curve) lateral modes (d = 6 μm), calculated by the effective index method, for a structure near the 3λ/4 antiresonance point. (b) Calculated fundamental-mode relative output power and first-order mode net gain Im(β1), as a function of the relative drive above threshold, for three values of the cladding-region width s; and for two values of α, the linewidth enhancement factor. Im(β1) = 0 corresponds with the first-order mode’s reaching threshold.

Fig. 4
Fig. 4

Calculated near- and far-field patterns at threshold and 10 times threshold for the single-cladding ARROW laser analyzed in Fig. 3.

Metrics