Abstract

Thermally induced bistability in a Tm, Ho:YAG microlaser has been observed. Theoretical results obtained from a simple plane-wave model are found to describe adequately the experimental transmission and reflection bistability data. The effect of pump interference on the single-mode operation of the laser is discussed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
    [CrossRef]
  2. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
    [CrossRef]
  3. J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef] [PubMed]
  4. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, Opt. Lett. 18, 1232 (1993).
    [CrossRef] [PubMed]
  5. G. J. Koch, J. P. Deyst, M. E. Storm, Opt. Lett. 18, 1235 (1993).
    [CrossRef] [PubMed]
  6. T. Y. Fan, Opt. Lett. 19, 554 (1994).
    [CrossRef] [PubMed]
  7. P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
    [CrossRef]
  8. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981), pp. 320–321.

1994

T. Y. Fan, Opt. Lett. 19, 554 (1994).
[CrossRef] [PubMed]

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

1993

1989

1985

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
[CrossRef]

1984

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Bruce, A.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Deyst, J. P.

Fan, T. Y.

Gavrilovic, P.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Gibbs, H. M.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Grodkiewicz, W. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Janossy, I.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981), pp. 320–321.

Koch, G. J.

Laporta, P.

Longhi, S.

Macleod, H. A.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Mathew, J. G. H.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
[CrossRef]

Mooradian, A.

O’Neill, M. S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Olbright, G. R.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Peyghambarian, N.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Singh, S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Smith, S. D.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
[CrossRef]

Storm, M. E.

Svelto, O.

Taccheo, S.

Taghizadeh, M. R.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
[CrossRef]

Van Milligen, F.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Williams, J. E.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Zarrabi, J. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

Zayhowski, J. J.

Appl. Phys. Lett.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, A. Bruce, Appl. Phys. Lett. 65, 1620 (1994).
[CrossRef]

IEEE J. Quantum Electron.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, IEEE J. Quantum Electron. QE-21, 1447 (1985).
[CrossRef]

Opt. Lett.

Other

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981), pp. 320–321.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Variation of (a) transmitted pump power, (b) reflected pump power, (c) absorbed power, and (d) laser output power with incident pump power. (c) Is obtained from the data given in (a) and ( b). The filled and open circles represent data for increasing and decreasing pump powers, respectively.

Fig. 2
Fig. 2

Calculated dependence of (a) transmitted pump power and (b) reflected pump power on incident pump power, using the experimental parameters and ϕ = 150° in Eqs. (1) and (2).

Fig. 3
Fig. 3

Calculated dependence of absorbed power on incident power, using the experimental parameters and ϕ = 0, π/2, π, and 3π/2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P t = ( 1 - R 1 ) ( 1 - R 2 ) exp ( - α L ) 1 + R 1 R 2 exp ( - 2 α L ) - 2 ( R 1 R 2 ) 1 / 2 exp ( - α L ) cos ( a P t + ϕ ) P o ,
P r = R 1 + R 2 exp ( - 2 α L ) - 2 ( R 1 R 2 ) 1 / 2 exp ( - α L ) cos ( a P t + ϕ ) 1 + R 1 R 2 exp ( - 2 α L ) - 2 ( R 1 R 2 ) 1 / 2 exp ( - α L ) cos ( a P t + ϕ ) P o ,
P a = [ 1 - exp ( - α L ) ] [ 1 + R 2 exp ( - α L ) ] ( 1 - R 2 ) exp ( - α L ) P t ,
a = 2 k v ( n 0 d L d T + L 0 d n d T ) Δ T P t , ϕ = 2 n 0 k v L 0 .

Metrics