Abstract

Ultrahigh-purity undoped binary lead-silicate and ternary barium borosilicate glass systems were used to study the dependence of photoinduced second-harmonic generation (SHG) on the composition of these materials. The experiments revealed a peak in the SHG conversion efficiency as a function of the compositional dependence in the ternary glass system that correlates with the density of three-oxygen-coordinated boron. A nonexponential decay of the SHG during the readout process was observed for the lead-silicate glasses. In addition, these glasses exhibited threshold behavior in the second-harmonic conversion efficiency with varying IR preparation intensity.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sasaki, Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
    [CrossRef]
  2. N. M. Lawandy, Phys. Rev. Lett. 65, 1745 (1990).
    [CrossRef] [PubMed]
  3. M. D. Selker, N. M. Lawandy, Opt. Commun. 77, 339 (1991).
  4. M. D. Selker, N. M. Lawandy, Opt. Commun. 81, 38 (1991).
    [CrossRef]
  5. E. M. Dianov, D. S. Starodubov, A. A. Izyneev, Opt. Lett. 19, 936 (1994).
    [CrossRef] [PubMed]
  6. E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).
  7. K. S. Evstropiev, A. Ya. Kuznetsov, I. G. Melnikova, Zh. Tekh. Fiz. 21, 104 (1951).
  8. M. F. Shlesinger, E. W. Montroll, Proc. Natl. Acad. Sci. (USA) 81, 1280 (1984).
    [CrossRef] [PubMed]
  9. H. Scher, M. F. Shlesinger, J. T. Bendler, Phys. Today 44(1), 26 (1991).
    [CrossRef]
  10. W. J. Dell, P. J. Bray, S. Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983).
    [CrossRef]

1994 (1)

1993 (1)

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

1991 (3)

H. Scher, M. F. Shlesinger, J. T. Bendler, Phys. Today 44(1), 26 (1991).
[CrossRef]

M. D. Selker, N. M. Lawandy, Opt. Commun. 77, 339 (1991).

M. D. Selker, N. M. Lawandy, Opt. Commun. 81, 38 (1991).
[CrossRef]

1990 (1)

N. M. Lawandy, Phys. Rev. Lett. 65, 1745 (1990).
[CrossRef] [PubMed]

1984 (1)

M. F. Shlesinger, E. W. Montroll, Proc. Natl. Acad. Sci. (USA) 81, 1280 (1984).
[CrossRef] [PubMed]

1983 (1)

W. J. Dell, P. J. Bray, S. Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983).
[CrossRef]

1981 (1)

Y. Sasaki, Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

1951 (1)

K. S. Evstropiev, A. Ya. Kuznetsov, I. G. Melnikova, Zh. Tekh. Fiz. 21, 104 (1951).

Bendler, J. T.

H. Scher, M. F. Shlesinger, J. T. Bendler, Phys. Today 44(1), 26 (1991).
[CrossRef]

Bray, P. J.

W. J. Dell, P. J. Bray, S. Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983).
[CrossRef]

Dell, W. J.

W. J. Dell, P. J. Bray, S. Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983).
[CrossRef]

Dianov, E. M.

E. M. Dianov, D. S. Starodubov, A. A. Izyneev, Opt. Lett. 19, 936 (1994).
[CrossRef] [PubMed]

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

Evstropiev, K. S.

K. S. Evstropiev, A. Ya. Kuznetsov, I. G. Melnikova, Zh. Tekh. Fiz. 21, 104 (1951).

Izyneev, A. A.

Kazansky, P. G.

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

Kuznetsov, A. Ya.

K. S. Evstropiev, A. Ya. Kuznetsov, I. G. Melnikova, Zh. Tekh. Fiz. 21, 104 (1951).

Lawandy, N. M.

M. D. Selker, N. M. Lawandy, Opt. Commun. 81, 38 (1991).
[CrossRef]

M. D. Selker, N. M. Lawandy, Opt. Commun. 77, 339 (1991).

N. M. Lawandy, Phys. Rev. Lett. 65, 1745 (1990).
[CrossRef] [PubMed]

Melnikova, I. G.

K. S. Evstropiev, A. Ya. Kuznetsov, I. G. Melnikova, Zh. Tekh. Fiz. 21, 104 (1951).

Montroll, E. W.

M. F. Shlesinger, E. W. Montroll, Proc. Natl. Acad. Sci. (USA) 81, 1280 (1984).
[CrossRef] [PubMed]

Ohmori, Y.

Y. Sasaki, Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Sasaki, Y.

Y. Sasaki, Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Scher, H.

H. Scher, M. F. Shlesinger, J. T. Bendler, Phys. Today 44(1), 26 (1991).
[CrossRef]

Selker, M. D.

M. D. Selker, N. M. Lawandy, Opt. Commun. 77, 339 (1991).

M. D. Selker, N. M. Lawandy, Opt. Commun. 81, 38 (1991).
[CrossRef]

Shlesinger, M. F.

H. Scher, M. F. Shlesinger, J. T. Bendler, Phys. Today 44(1), 26 (1991).
[CrossRef]

M. F. Shlesinger, E. W. Montroll, Proc. Natl. Acad. Sci. (USA) 81, 1280 (1984).
[CrossRef] [PubMed]

Starodubov, D. S.

E. M. Dianov, D. S. Starodubov, A. A. Izyneev, Opt. Lett. 19, 936 (1994).
[CrossRef] [PubMed]

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

Stepanov, D. Yu

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

Taylor, E. R.

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

Xiao, S. Z.

W. J. Dell, P. J. Bray, S. Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Sasaki, Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

J. Non-Cryst. Solids (1)

W. J. Dell, P. J. Bray, S. Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983).
[CrossRef]

Opt. Commun. (2)

M. D. Selker, N. M. Lawandy, Opt. Commun. 77, 339 (1991).

M. D. Selker, N. M. Lawandy, Opt. Commun. 81, 38 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

N. M. Lawandy, Phys. Rev. Lett. 65, 1745 (1990).
[CrossRef] [PubMed]

Phys. Today (1)

H. Scher, M. F. Shlesinger, J. T. Bendler, Phys. Today 44(1), 26 (1991).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

M. F. Shlesinger, E. W. Montroll, Proc. Natl. Acad. Sci. (USA) 81, 1280 (1984).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

E. M. Dianov, P. G. Kazansky, D. S. Starodubov, D. Yu Stepanov, E. R. Taylor, Proc. Soc. Photo-Opt. Instrum. Eng. 2044, 27 (1993).

Zh. Tekh. Fiz. (1)

K. S. Evstropiev, A. Ya. Kuznetsov, I. G. Melnikova, Zh. Tekh. Fiz. 21, 104 (1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Strength of the relative effective χ(2) grating encoded in the binary lead-silicate glasses (open circles) and the resistivity data measured by Evstropiev et al.7 between 71 and 79 °C (open triangles) as a function of lead-oxide concentration.

Fig. 2
Fig. 2

Typical nonexponential decay of a SHG signal during readout along with a stretched exponential and sample exponential fit.

Fig. 3
Fig. 3

Compositional dependence on the stretched exponential fit parameters τ−1 (open triangles) and β (open circles).

Fig. 4
Fig. 4

Dependence of τ−1 (open triangles), which represents the distributed relaxation times, on the relative amplitude of the quasi-phase-matched Edc (open circles) at various lead concentrations.

Fig. 5
Fig. 5

Relative effective χ(2) values encoded for ternary barium borosilicate glasses (open circles) and NMR measurements of the concentration of three-oxygen-coordinated (CN3) borons (open triangles)10 for the alkali borosilicate glass system at various borate concentrations.

Fig. 6
Fig. 6

Plot of the relative effective χ(2) values for various glasses at different IR preparation intensities while the second-harmonic intensity was kept constant.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ eff ( 2 ) ( t ) = χ eff ( 2 ) ( 0 ) exp [ - ( t τ ) β ]

Metrics