Abstract

Investigation results of angular structure formation in a picosecond traveling-wave optical parametric generator (OPG) based on a KDP crystal (type II phase matching) pumped by intersecting beams are presented. It is demonstrated that the angular structure of the OPG output radiation is controlled by pump geometry. Frequency-tuned diffraction-limited output even in a single-pass OPG was observed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).
  2. V. Smilgevičius, A. Stabinis, Opt. Commun. 106, 69 (1994).
    [CrossRef]
  3. D. Magde, R. Scarlet, H. Mahr, Appl. Phys. Lett. 11, 381 (1967).
    [CrossRef]
  4. A. P. Sukhorukov, A. K. Shchednova, Sov. Phys. JETP 60, 1251 (1971).
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  6. A. Baltuška, R. Gadonas, A. Piskarskas, A. Pugžlys, “Time-resolved spectroscopy system based on FCM Nd:YAG laser and optical parametric lasers,” Exp. Tech. Phys. (to be published).
  7. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini, J. Opt. Soc. Am. B 10, 2222 (1993).
    [CrossRef]

1994 (1)

V. Smilgevičius, A. Stabinis, Opt. Commun. 106, 69 (1994).
[CrossRef]

1993 (1)

1991 (1)

E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).

1971 (1)

A. P. Sukhorukov, A. K. Shchednova, Sov. Phys. JETP 60, 1251 (1971).

1967 (1)

D. Magde, R. Scarlet, H. Mahr, Appl. Phys. Lett. 11, 381 (1967).
[CrossRef]

Baltuška, A.

A. Baltuška, R. Gadonas, A. Piskarskas, A. Pugžlys, “Time-resolved spectroscopy system based on FCM Nd:YAG laser and optical parametric lasers,” Exp. Tech. Phys. (to be published).

Banfi, G. P.

Danielius, R.

Di Trapani, P.

Gadonas, R.

A. Baltuška, R. Gadonas, A. Piskarskas, A. Pugžlys, “Time-resolved spectroscopy system based on FCM Nd:YAG laser and optical parametric lasers,” Exp. Tech. Phys. (to be published).

Gaižauskas, E.

E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).

Magde, D.

D. Magde, R. Scarlet, H. Mahr, Appl. Phys. Lett. 11, 381 (1967).
[CrossRef]

Mahr, H.

D. Magde, R. Scarlet, H. Mahr, Appl. Phys. Lett. 11, 381 (1967).
[CrossRef]

Piskarskas, A.

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini, J. Opt. Soc. Am. B 10, 2222 (1993).
[CrossRef]

E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).

A. Baltuška, R. Gadonas, A. Piskarskas, A. Pugžlys, “Time-resolved spectroscopy system based on FCM Nd:YAG laser and optical parametric lasers,” Exp. Tech. Phys. (to be published).

Pugžlys, A.

A. Baltuška, R. Gadonas, A. Piskarskas, A. Pugžlys, “Time-resolved spectroscopy system based on FCM Nd:YAG laser and optical parametric lasers,” Exp. Tech. Phys. (to be published).

Righini, R.

Scarlet, R.

D. Magde, R. Scarlet, H. Mahr, Appl. Phys. Lett. 11, 381 (1967).
[CrossRef]

Shchednova, A. K.

A. P. Sukhorukov, A. K. Shchednova, Sov. Phys. JETP 60, 1251 (1971).

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Šlekys, G.

E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).

Smilgevicius, V.

V. Smilgevičius, A. Stabinis, Opt. Commun. 106, 69 (1994).
[CrossRef]

E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).

Stabinis, A.

Sukhorukov, A. P.

A. P. Sukhorukov, A. K. Shchednova, Sov. Phys. JETP 60, 1251 (1971).

Appl. Phys. Lett. (1)

D. Magde, R. Scarlet, H. Mahr, Appl. Phys. Lett. 11, 381 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

V. Smilgevičius, A. Stabinis, Opt. Commun. 106, 69 (1994).
[CrossRef]

Sov. J. Quantum Electron. (1)

E. Gaižauskas, A. Piskarskas, V. Smilgevičius, G. Šlekys, Sov. J. Quantum Electron. 20, 633 (1991).

Sov. Phys. JETP (1)

A. P. Sukhorukov, A. K. Shchednova, Sov. Phys. JETP 60, 1251 (1971).

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

A. Baltuška, R. Gadonas, A. Piskarskas, A. Pugžlys, “Time-resolved spectroscopy system based on FCM Nd:YAG laser and optical parametric lasers,” Exp. Tech. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Double phase-matching points Θ1d, ±φ1d for an o wave at fixed frequency, (b) triple phase-matching point Θ1t, 0 for an o wave.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

(a) Angular distribution of the OPG output spectrum (filled circles) and phase-matching curves for each pump beam, (b) angular distribution of the intensity of the observed beams.

Fig. 4
Fig. 4

Output of single-pass OPG pumped by (a) two and (b) three pump beams in the near field.

Fig. 5
Fig. 5

Tuning curve for the second beam.

Tables (2)

Tables Icon

Table 1 Double Phase-Matching Strips

Tables Icon

Table 2 Triple Phase-Matching Spots

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k 1 x + k 2 x = k 3 x , k 1 y + k 2 y = k 3 y ,
k 1 z + k 2 z ( Θ 0 + Θ 2 ) = k 3 z ( Θ 0 + Θ 3 ) .
( Θ 1 , 2 - Θ 3 ± β 2 / 2 ) 2 + ( φ 1 , 2 - φ 3 ) 2 = R 2 ,
Θ 1 + Θ 2 2 Θ 3 ,             φ 1 + φ 2 2 φ 3 .
A 3 ( x ) = A 3 exp ( i k 3 Θ 3 x ) + A 3 exp ( i k 3 Θ 3 x ) .
Θ 1 d = γ + β 3 - β 2 ,             φ 1 d = ± [ ( Δ ω d - Δ ω 0 ) ν / k 0 ] 1 / 2 , Θ 2 d = γ + β 3 ,             φ 2 d = φ 1 d .
A 3 ( x , y ) = A 3 exp ( i k 3 Θ 3 x + i k 3 φ 3 y ) + A 3 exp ( i k 3 Θ 3 x - i k 3 φ 3 y ) + A 3 exp ( i k 3 Θ 3 x ) .
Θ 1 t = γ + β 3 + β 2 - φ 3 2 / ( 2 α ) , Θ 2 t = γ + β 3 - φ 3 2 / ( 2 α ) , φ 1 t = φ 2 t = 0.

Metrics