Abstract

The temporal envelope profile and the phase of a steady-state pulse propagating through a resonant medium in the presence of nonresonant nonlinearity are derived. The formation of solitonlike pulses takes place as a result of the balance of the self-phase modulation generated by nonresonant nonlinearity and the nonlinear resonant group-velocity dispersion induced by the self-induced-transparency effect in a resonant medium. Self-phase-modulation action leads to distortion of the pulse when its power and inverse duration exceed the critical values Pcr and τcr-1. We show the destructive role of self-phase modulation in the case of self-induced-transparency pulse generation in a laser with erbium-doped fiber as an intracavity coherent absorber.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, E. L. Hahn, Phys. Rev. 183, 457 (1969).
    [CrossRef]
  2. M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
    [CrossRef] [PubMed]
  3. A. Guzman, M. Romagnoli, S. Wabnitz, Appl. Phys. Lett. 56, 614 (1990).
    [CrossRef]
  4. M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
    [CrossRef] [PubMed]
  5. M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, Opt. Lett. 18, 613 (1993).
    [CrossRef] [PubMed]
  6. A. I. Maimistov, E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).
  7. V. V. Kozlov, E. E. Fradkin, presented at European Quantum Electronics Conference, Amsterdam, 1994, paper QThG6; JETP 80, 32 (1995) [Zh. Eksp. Teor. Fiz. 107, 62 (1995)]; V. V. Kozlov, JETP 80, 191 (1995) [Zh. Eksp. Teor. Fiz. 107, 360 (1995)].

1993 (1)

1992 (1)

M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
[CrossRef] [PubMed]

1991 (1)

M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
[CrossRef] [PubMed]

1990 (1)

A. Guzman, M. Romagnoli, S. Wabnitz, Appl. Phys. Lett. 56, 614 (1990).
[CrossRef]

1983 (1)

A. I. Maimistov, E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).

1969 (1)

S. L. McCall, E. L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

Fradkin, E. E.

V. V. Kozlov, E. E. Fradkin, presented at European Quantum Electronics Conference, Amsterdam, 1994, paper QThG6; JETP 80, 32 (1995) [Zh. Eksp. Teor. Fiz. 107, 62 (1995)]; V. V. Kozlov, JETP 80, 191 (1995) [Zh. Eksp. Teor. Fiz. 107, 360 (1995)].

Guzman, A.

A. Guzman, M. Romagnoli, S. Wabnitz, Appl. Phys. Lett. 56, 614 (1990).
[CrossRef]

Hahn, E. L.

S. L. McCall, E. L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

Kimura, Y.

M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, Opt. Lett. 18, 613 (1993).
[CrossRef] [PubMed]

M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
[CrossRef] [PubMed]

Kozlov, V. V.

V. V. Kozlov, E. E. Fradkin, presented at European Quantum Electronics Conference, Amsterdam, 1994, paper QThG6; JETP 80, 32 (1995) [Zh. Eksp. Teor. Fiz. 107, 62 (1995)]; V. V. Kozlov, JETP 80, 191 (1995) [Zh. Eksp. Teor. Fiz. 107, 360 (1995)].

Kubota, H.

Kurokawa, K.

M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
[CrossRef] [PubMed]

Maimistov, A. I.

A. I. Maimistov, E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).

Manykin, E. A.

A. I. Maimistov, E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).

McCall, S. L.

S. L. McCall, E. L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, Opt. Lett. 18, 613 (1993).
[CrossRef] [PubMed]

M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
[CrossRef] [PubMed]

M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
[CrossRef] [PubMed]

Romagnoli, M.

A. Guzman, M. Romagnoli, S. Wabnitz, Appl. Phys. Lett. 56, 614 (1990).
[CrossRef]

Suzuki, K.

M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, Opt. Lett. 18, 613 (1993).
[CrossRef] [PubMed]

M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
[CrossRef] [PubMed]

Wabnitz, S.

A. Guzman, M. Romagnoli, S. Wabnitz, Appl. Phys. Lett. 56, 614 (1990).
[CrossRef]

Yamada, E.

M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Guzman, M. Romagnoli, S. Wabnitz, Appl. Phys. Lett. 56, 614 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

S. L. McCall, E. L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

Phys. Rev. A (1)

M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, R23 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

A. I. Maimistov, E. A. Manykin, Sov. Phys. JETP 58, 685 (1983).

Other (1)

V. V. Kozlov, E. E. Fradkin, presented at European Quantum Electronics Conference, Amsterdam, 1994, paper QThG6; JETP 80, 32 (1995) [Zh. Eksp. Teor. Fiz. 107, 62 (1995)]; V. V. Kozlov, JETP 80, 191 (1995) [Zh. Eksp. Teor. Fiz. 107, 360 (1995)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Normalized power as a function of normalized duration T for the pure SIT effect (ν = 0, curve 1) and for the SIT effect under SPM action (ν ≠ 0, curve 2). The dotted part of curve 2 shows the power-duration dependence for the unstable solution.

Fig. 2
Fig. 2

Plot of nonlinear resonant dispersion versus frequency detuning Δ = (ωω0)τ.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( z - σ u ) E = i ( ϑ - 1 P - ν E 2 E ) ,
u P = - i ϑ E N ,             u N = i 2 ϑ ( E P * - E * P ) ,
E ( z ˜ , t ) = A 0 d E ( u , z ) exp [ - i ( ω 0 t - k z ˜ ) ] ,
P ( z ˜ , t ) = d P ( u , z ) exp [ - i ( ω 0 t - k z ˜ ) ] .
u ( ϑ 2 2 σ E 2 - N ) = ϑ 2 2 z E 2 ,
u { i ( P E * + E P * ) - ϑ [ i v 2 E 4 + 1 2 ( E * E z - E E * z ) ] } = ϑ 2 z ( E E * u - E * E u ) ,
E ( u ) = ɛ ( u ) exp [ i φ ( u ) ] , P ( u ) = [ p ( u ) + i q ( u ) ] exp [ i φ ( u ) ] .
( d d u ɛ ) 2 = a ɛ 2 - b ɛ 2 - c ɛ 6 ,             d φ d u = 3 ν 4 σ ɛ 2 ( u ) ,
ɛ ( u ) = [ 1 ( c + 1 ) c h 2 u - c ] 1 / 2 ,             d φ d u = 3 4 ν ɛ 2 ( u ) .
P ˜ 2 + T 4 P ˜ - 2 T 2 = 0 ,             P cr = 1 8 c η ɛ 0 A eff 2 τ cr 2 2 d 2 , τ cr = ( 1 8 c η ɛ 0 A eff 2 / d 2 2 λ A eff 2 π η 2 2 π ω 0 η d 2 n c ) 1 / 3 .
ω = ω 0 - - + d ϕ d t ɛ 2 d t / - + ɛ 2 d t .
( L NL ) eff = L NL 135 m 103 m = 7.34 m ,
( L ab ) eff = L ab [ 1 + Δ N exp ( T R / T 1 ) - 1 ] 135 m 3 m , Δ N = 2 3 τ T 2 ,

Metrics