Abstract

Transient and persistent holographic gratings have been observed in dye- and fullerene C60-doped nematic liquid-crystal films. The nature and time evolution of the underlying mechanisms, such as space-charge field production, flows, and dielectric- and conductivity-induced torques, and the resultant director axis reorientation and refractive-index gratings are examined.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example,P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1989), Vols. I and II. see also E. V. Rudenko, A. V. Sukhov, Sov. Phys. JETP 78, 875 (1995)for calculation of the photorefractivelike space-charge formation in nematic liquid crystals.
  2. S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
    [Crossref] [PubMed]
  3. A. G.-S. Chen, D. J. Brady, Opt. Lett. 17, 1231 (1992); W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
    [Crossref] [PubMed]
  4. See, for example,O. Werner, B. Fisher, A. Lewis, Opt. Lett. 17, 241 (1992).
    [Crossref] [PubMed]
  5. R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
    [Crossref]
  6. A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
    [Crossref]
  7. I. C. Khoo, H. Li, Y. Liang, Opt. Lett. 19, 1723 (1994).
    [Crossref] [PubMed]
  8. W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
    [Crossref]
  9. F. P. Schaefer, ed., Dye Lasers (Springer-Verlag, Berlin, 1976).
  10. Y. Wang, J. Phys. Chem. 96, 764 (1992); Nature (London) 356, 585 (1992); Y. Wang, L. T. Cheng, J. Phys. Chem. 96, 1530 (1992); Y. Zhang, Y. Cui, P. N. Prasad, Phys. Rev. B 46, 9900 (1992).
    [Crossref]
  11. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1995); see also I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystal (World Scientific, Singapore, 1993).

1994 (3)

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[Crossref]

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

I. C. Khoo, H. Li, Y. Liang, Opt. Lett. 19, 1723 (1994).
[Crossref] [PubMed]

1992 (3)

A. G.-S. Chen, D. J. Brady, Opt. Lett. 17, 1231 (1992); W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref] [PubMed]

See, for example,O. Werner, B. Fisher, A. Lewis, Opt. Lett. 17, 241 (1992).
[Crossref] [PubMed]

Y. Wang, J. Phys. Chem. 96, 764 (1992); Nature (London) 356, 585 (1992); Y. Wang, L. T. Cheng, J. Phys. Chem. 96, 1530 (1992); Y. Zhang, Y. Cui, P. N. Prasad, Phys. Rev. B 46, 9900 (1992).
[Crossref]

1991 (1)

S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
[Crossref] [PubMed]

1969 (1)

W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[Crossref]

Brady, D. J.

Chadi, J. D.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[Crossref]

Chen, A. G.-S.

Devlin, G. E.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[Crossref]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
[Crossref] [PubMed]

Erdogan, T.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

Fisher, B.

Glass, A. M.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

Helfrich, W.

W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[Crossref]

Heming, J. W.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

Khoo, I. C.

I. C. Khoo, H. Li, Y. Liang, Opt. Lett. 19, 1723 (1994).
[Crossref] [PubMed]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1995); see also I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystal (World Scientific, Singapore, 1993).

Lemaire, P. J.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

Lewis, A.

Li, H.

Liang, Y.

Linke, R. A.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[Crossref]

Mizrahi, V.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

Moerner, W. E.

S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
[Crossref] [PubMed]

Partovi, A.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
[Crossref] [PubMed]

Thio, T.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[Crossref]

Tweig, R. J.

S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, J. Phys. Chem. 96, 764 (1992); Nature (London) 356, 585 (1992); Y. Wang, L. T. Cheng, J. Phys. Chem. 96, 1530 (1992); Y. Zhang, Y. Cui, P. N. Prasad, Phys. Rev. B 46, 9900 (1992).
[Crossref]

Werner, O.

Appl. Phys. Lett. (2)

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[Crossref]

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Heming, Appl. Phys. Lett. 64, 821 (1994), and references therein.
[Crossref]

J. Chem. Phys. (1)

W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[Crossref]

J. Phys. Chem. (1)

Y. Wang, J. Phys. Chem. 96, 764 (1992); Nature (London) 356, 585 (1992); Y. Wang, L. T. Cheng, J. Phys. Chem. 96, 1530 (1992); Y. Zhang, Y. Cui, P. N. Prasad, Phys. Rev. B 46, 9900 (1992).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Tweig, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991); K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
[Crossref] [PubMed]

Other (3)

See, for example,P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1989), Vols. I and II. see also E. V. Rudenko, A. V. Sukhov, Sov. Phys. JETP 78, 875 (1995)for calculation of the photorefractivelike space-charge formation in nematic liquid crystals.

F. P. Schaefer, ed., Dye Lasers (Springer-Verlag, Berlin, 1976).

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1995); see also I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystal (World Scientific, Singapore, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic depiction of the incident optical intensity distribution, director axis spatial orientation profile (n is normal to the solid curves), nematic liquid-crystal material flow (vz), and space-charge fields in the nematic liquid-crystal film.

Fig. 2
Fig. 2

(a) Observed grating buildup and relaxation in the transient regime; maximum diffraction efficiency ~0.5%. (b) Observed grating persistence and relaxation in a 25-μm-thick C60-doped film in the intermediate regime, when the incident optical fields are turned off. The maximum diffraction efficiency is ~5%. Time scale, 0.5 s/division; C60 concentration, 0.05% by weight; wave-mixing angle (in air), ~8.7 × 10−3 rad; grating constant, ~57 μm. Input +1 and −1 beam powers are 24 and 16 mW, respectively.

Fig. 3
Fig. 3

Observed dependence of the first-order diffraction efficiency from permanent gratings written in a 25-μmthick C60-doped film.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E Δ σ = - ( Δ σ sin θ cos θ σ | | sin 2 θ + σ cos 2 θ ) E z ,
E Δ ɛ = - ( Δ ɛ sin θ cos θ ɛ | | sin 2 θ + ɛ cos 2 θ ) E z .
E ph = - m k B T 2 e q v σ - σ d σ sin q ξ ,

Metrics