Abstract

An efficient doubling scheme capable of producing 16-fs pulses centered at 425 nm with an average power of 40 mW is described. The system uses 15-fs pulses from a continuous-wave mode-locked Ti:sapphire oscillator centered at 850 nm. The pulse characteristics resulting from doubling with β-barium borate crystals of various lengths are presented. The results compare favorably with previous attempts at intracavity doubling and provide a more convenient route to femtosecond experiments with fully synchronized second-harmonic radiation.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. P. Christov, Opt. Lett. 19, 1149 (1994).
    [PubMed]
  3. A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 20, 602 (1995).
    [CrossRef] [PubMed]
  4. R. J. Ellingson, C. L. Tang, Opt. Lett. 17, 343 (1992).
    [CrossRef] [PubMed]
  5. S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 19, 399 (1994).
    [PubMed]
  6. M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.
  7. A. Nebel, R. Beigang, Opt. Lett. 16, 1729 (1991).
    [CrossRef] [PubMed]
  8. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 57 (1993).
    [CrossRef]
  9. Z. Bor, Opt. Lett. 14, 119 (1989).
    [CrossRef] [PubMed]
  10. T. R. Zhang, H. R. Choo, M. C. Downer, Appl. Opt. 29, 3927 (1990).
    [CrossRef] [PubMed]
  11. O. E. Martínez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  12. Th. Hofmann, K. Mossavi, F. K. Tittel, G. Szabó, Opt. Lett. 17, 1691 (1992).
    [CrossRef]
  13. R. C. Eckardt, J. Reintjes, IEEE J. Quantum Electron. 20, 1178 (1984).
    [CrossRef]

1995 (1)

1994 (2)

1993 (1)

1992 (2)

1991 (2)

1990 (1)

1989 (2)

O. E. Martínez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Z. Bor, Opt. Lett. 14, 119 (1989).
[CrossRef] [PubMed]

1984 (1)

R. C. Eckardt, J. Reintjes, IEEE J. Quantum Electron. 20, 1178 (1984).
[CrossRef]

Asaki, M. T.

S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 19, 399 (1994).
[PubMed]

M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.

Backus, S.

S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 19, 399 (1994).
[PubMed]

M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.

Baldwin, C.

M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.

Beigang, R.

Bor, Z.

Brabec, T.

Choo, H. R.

Christov, I. P.

Curley, P. F.

Downer, M. C.

Eckardt, R. C.

R. C. Eckardt, J. Reintjes, IEEE J. Quantum Electron. 20, 1178 (1984).
[CrossRef]

Ellingson, R. J.

Hofmann, Th.

Huang, C.-P.

Kapteyn, H. C.

J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. P. Christov, Opt. Lett. 19, 1149 (1994).
[PubMed]

S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 19, 399 (1994).
[PubMed]

M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.

Kean, P. N.

Krausz, F.

Lenzner, M.

Martínez, O. E.

O. E. Martínez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Mossavi, K.

Murnane, M. M.

J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. P. Christov, Opt. Lett. 19, 1149 (1994).
[PubMed]

S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 19, 399 (1994).
[PubMed]

M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.

Nebel, A.

Reintjes, J.

R. C. Eckardt, J. Reintjes, IEEE J. Quantum Electron. 20, 1178 (1984).
[CrossRef]

Schmidt, A. J.

Shi, C.

S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 19, 399 (1994).
[PubMed]

M. T. Asaki, S. Backus, C. Baldwin, C. Shi, M. M. Murnane, H. C. Kapteyn, in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds. (Springer-Verlag, Berlin, 1994), p. 210.

Sibbett, W.

Spence, D. E.

Spielmann, C.

Spielmann, Ch.

Stingl, A.

Szabó, G.

Szipöcs, R.

Taft, G.

Tang, C. L.

Tittel, F. K.

Wintner, E.

Zhang, T. R.

Zhou, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectrum (upper panel) and autocorrelation trace of pulses at 425 nm generated by frequency doubling in a 100-μm-thick BBO crystal. The autocorrelation function plotted on a logarithmic scale (lower panel inset) shows clean pulse wings over 4 orders of magnitude that are close to that for sech2-shaped pulses (solid curve). A pulse duration of 16 fs and a time–bandwidth product of 0.37 are derived from the data.

Fig. 2
Fig. 2

Top: Pulse duration (open squares) and bandwidth (filled circles) of the second harmonic as a function of the length of the BBO doubling crystal. Bottom: Average power (filled squares) and time–bandwidth product (open circles) versus crystal length. The input pulses at 850 nm had a duration of 15 fs and an average power of 550 mW.

Fig. 3
Fig. 3

Dependence of the second-harmonic bandwidth on the angle subtended at the crystal (see text). Open squares: Beam width reduction in the plane of polarization (slit oriented perpendicular to plane of polarization). Filled squares: Beam width reduction perpendicular to plane of polarization (slit oriented parallel to plane of polarization). The error bars shown apply to all points.

Metrics