Abstract

A laser beam propagating in a photorefractive crystal generates a refractive-index profile that deflects the beam to one side. This nonlinear deflection can be balanced by total internal reflection at the crystal surface to produce self-induced photorefractive surface waves. Theoretical and experimental evidence for this effect is given.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
    [Crossref] [PubMed]
  2. M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
    [Crossref]
  3. O. V. Lyubomudrov, V. V. Shkunov, J. Opt. Soc. Am. B 11, 1403 (1994).
    [Crossref]
  4. D. N. Christodoulides, M. I. Carvalho, Opt. Lett. 19, 1714 (1994).
    [Crossref] [PubMed]
  5. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, S. Stepanov, Phys. Rev. A 51, 1571 (1995).
    [Crossref] [PubMed]
  6. M. Cronin-Golomb, Opt. Commun. 89, 276 (1992).
    [Crossref]
  7. R. Daisy, B. Fischer, J. Opt. Soc. Am. B 11, 1059 (1994).
    [Crossref]
  8. E. Parshall, M. Cronin-Golomb, R. Barakat, Opt. Lett. 20, 432 (1995).
    [Crossref] [PubMed]
  9. G. Brost, R. Motes, J. Rotge, J. Opt. Soc. Am. B 5, 1879 (1988).
    [Crossref]
  10. S. W. James, K. E. Youden, P. M. Jeffrey, R. W. Eason, P. J. Chandler, L. Zhang, P. D. Townsend, Opt. Lett. 18, 1138 (1993).
    [Crossref] [PubMed]

1995 (3)

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[Crossref] [PubMed]

E. Parshall, M. Cronin-Golomb, R. Barakat, Opt. Lett. 20, 432 (1995).
[Crossref] [PubMed]

1994 (3)

1993 (1)

1992 (2)

M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[Crossref] [PubMed]

M. Cronin-Golomb, Opt. Commun. 89, 276 (1992).
[Crossref]

1988 (1)

Barakat, R.

Brost, G.

Carvalho, M. I.

Chandler, P. J.

Christodoulides, D. N.

Cronin-Golomb, M.

Crosignani, B.

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[Crossref] [PubMed]

Daisy, R.

Di Porto, P.

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

Eason, R. W.

Fischer, B.

R. Daisy, B. Fischer, J. Opt. Soc. Am. B 11, 1059 (1994).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[Crossref] [PubMed]

Garcia Quirino, G. S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[Crossref] [PubMed]

James, S. W.

Jeffrey, P. M.

Lyubomudrov, O. V.

Motes, R.

Parshall, E.

Rotge, J.

Salamo, G.

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

Sanchez-Mondragon, J. J.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[Crossref] [PubMed]

Segev, M.

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[Crossref] [PubMed]

Shih, M. F.

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

Shkunov, V. V.

Stepanov, S.

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[Crossref] [PubMed]

Townsend, P. D.

Valley, G. C.

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

Yariv, A.

M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[Crossref] [PubMed]

Youden, K. E.

Zhang, L.

Electron. Lett. (1)

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, Electron. Lett. 31, 826 (1995).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

M. Cronin-Golomb, Opt. Commun. 89, 276 (1992).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

G. S. Garcia Quirino, J. J. Sanchez-Mondragon, S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical eigenmode profile from the zero dark conductivity waveguide model.

Fig. 2
Fig. 2

Development of the surface guided wave as predicted by the beam-propagation model. The crystal edge is at the transverse position of 200 μm.

Fig. 3
Fig. 3

(a) Transverse intensity profile at the end of the interaction length for the case of Fig. 2. The intensity profile of the output beam in the absence of the photorefractive nonlinearity is denoted by zero gain. (b) Expanded view around the crystal edge showing interference fringes.

Fig. 4
Fig. 4

Experimental profiles at the output of a 45-deg-cut barium titanate crystal: (a) image of the exit face, with the crystal edge denoted by a black line, (b) spatial profile averaged over the direction parallel to the crystal edge.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d 2 A d x 2 + ( k 2 2 - β 2 ) A + 2 q d A d x = 0
E sc = k B T I d I d x .
q = ( 2 π λ n 2 ) 2 r eff k B T e ,
A out = exp ( - β 2 - k 1 2 x ) cos ϕ , A in = exp ( q x ) cos ( k 2 2 - q 2 - β 2 x + ϕ ) , ϕ = arctan ( β 2 - k 1 2 + q k 2 2 - q 2 - β 2 ) ,
k 2 2 - q 2 > β 2 > k 1 2 .

Metrics