Abstract

We study theoretically and experimentally second-harmonic generation (SHG) of 150-fs-duration amplified Ti:sapphire laser pulses at a wavelength of 780 nm in the nonlinear crystal KDP of different lengths and at different power densities as high as 150 GW cm−2. The experimentally observed SHG conversion efficiency does not exceed 50%. It is shown theoretically that one possible process limiting the SHG efficiency at low as well as at high intensities is the modulation of the phase of the fundamental wave. In addition, continuum generation is observed at high intensities and can decrease the SHG efficiency.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Rodriguez, J. P. Roberts, A. J. Taylor, Opt. Lett. 19, 1146 (1994).
    [CrossRef] [PubMed]
  2. D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
    [CrossRef]
  3. F. Salin, J. Squier, G. Mourou, G. Vaillancourt, Opt. Lett. 16, 1964 (1991).
    [CrossRef] [PubMed]
  4. V. D. Volosov, A. Kalintsev, Sov. J. Quantum Electron. 4, 451 (1974).
    [CrossRef]
  5. V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).
  6. Yu N. Karamzin, A. P. Sukhorukov, Sov. J. Quantum Electron. 5, 496 (1975).
    [CrossRef]

1994 (1)

1991 (1)

1988 (1)

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

1984 (1)

V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).

1975 (1)

Yu N. Karamzin, A. P. Sukhorukov, Sov. J. Quantum Electron. 5, 496 (1975).
[CrossRef]

1974 (1)

V. D. Volosov, A. Kalintsev, Sov. J. Quantum Electron. 4, 451 (1974).
[CrossRef]

Bosenberg, W. R.

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Cheng, L. K.

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Dedushkevich, V. V.

V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).

Edelstein, D. C.

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Kalintsev, A.

V. D. Volosov, A. Kalintsev, Sov. J. Quantum Electron. 4, 451 (1974).
[CrossRef]

Karamzin, Yu N.

Yu N. Karamzin, A. P. Sukhorukov, Sov. J. Quantum Electron. 5, 496 (1975).
[CrossRef]

Krylov, V. N.

V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).

Mourou, G.

Roberts, J. P.

Rodriguez, G.

Salin, F.

Squier, J.

Sukhorukov, A. P.

Yu N. Karamzin, A. P. Sukhorukov, Sov. J. Quantum Electron. 5, 496 (1975).
[CrossRef]

Tang, C. L.

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Taylor, A. J.

Tolstoshev, A. V.

V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).

Vaillancourt, G.

Volosov, V. D.

V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).

V. D. Volosov, A. Kalintsev, Sov. J. Quantum Electron. 4, 451 (1974).
[CrossRef]

Washman, E. S.

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

D. C. Edelstein, E. S. Washman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[CrossRef]

Bull. Acad. Sci. Phys. Ser. (1)

V. D. Volosov, V. V. Dedushkevich, V. N. Krylov, A. V. Tolstoshev, Bull. Acad. Sci. Phys. Ser. 48, 182 (1984).

Opt. Lett. (2)

Sov. J. Quantum Electron. (2)

V. D. Volosov, A. Kalintsev, Sov. J. Quantum Electron. 4, 451 (1974).
[CrossRef]

Yu N. Karamzin, A. P. Sukhorukov, Sov. J. Quantum Electron. 5, 496 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated conversion efficiency of SHG as a function of the fundamental intensity for KDP crystal lengths of 3 and 10 mm without consideration of group-velocity mismatch (curves 1 and 2, respectively), KDP crystal lengths of 3, 5, 7, and 10 mm with the effects of group-velocity mismatch considered (curves 1′, 2′, 3′, and 4′, respectively), and a 5-mm-long KDP crystal with the effects of group-velocity mismatch and phase modulation considered (π/2 during 150 fs; curve 1″).

Fig. 2
Fig. 2

Calculated pulse profiles at different fundamental beam intensities I of (a) 3 GW cm−2, (b) 30 GW cm−2, and (c) 150 GW cm−2. Curve 1 is for λ = 780 nm at the input of the KDP crystal. Curves 2, 3, 4, and 5 are for λ = 780 nm and curves 2′, 3′, 4′, and 5′ are for λ = 390 nm at the output of KDP crystal lengths of 3, 5, 7, and 10 mm, respectively.

Fig. 3
Fig. 3

Experimental conversion efficiency of SHG as a function of the fundamental intensity for KDP crystal lengths of 3, 5, 10, and 40 mm (curves 1, 2, 3, and 4, respectively).

Tables (1)

Tables Icon

Table 1 Nonlinear-Optical Parameters of SHG Crystals

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z A 1 ( z , t ) + 1 u 1 t A 1 ( z , t ) = - i σ 1 A 1 * A 2 exp ( - i Δ z ) , z A 2 ( z , t ) + 1 u 2 t A 2 ( z , t ) = - i σ 2 A 1 2 exp ( - i Δ z ) ,

Metrics