Abstract

The dependence of output coupling efficiency on the periodicity of a surface grating outcoupler was investigated. Horizontal cavity InGaAs/AlGaAs laser oscillators with two first-order surface gratings as feedback elements were integrated with detuned rectangular second-order gratings as surface output couplers by the use of electron-beam lithography and chemically assisted ion-beam etching. A high surface emission efficiency of more than 60% was achieved for grating periodicities detuned −2.5 nm to −15 nm and +2.5 nm from the resonance periodicity of 295 nm. For larger positive detuning, the surface emission efficiency is reduced because of the onset of second-order diffraction into the substrate.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Zory, L. D. Comerford, IEEE J. Quantum Electron. QE-11, 451 (1975).
    [CrossRef]
  2. T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
    [CrossRef]
  3. T. Suhara, H. Nishihara, IEEE J. Quantum Electron. QE-22, 845 (1986).
    [CrossRef]
  4. M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
    [CrossRef]
  5. D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
    [CrossRef]
  6. R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
    [CrossRef]
  7. M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
    [CrossRef]
  8. See, for example,A. Yariv, Optical Electronics, 3rd ed. (CBS, New York, 1985).
  9. M. Matsumoto, IEEE J. Quantum Electron. 28, 2016 (1992).
    [CrossRef]
  10. W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976).
    [CrossRef]
  11. A. Hardy, D. F. Welch, W. Streifer, IEEE J. Quantum Electron. 25, 2096 (1989).
    [CrossRef]

1994 (2)

M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
[CrossRef]

1993 (1)

T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
[CrossRef]

1992 (1)

M. Matsumoto, IEEE J. Quantum Electron. 28, 2016 (1992).
[CrossRef]

1991 (1)

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

1990 (1)

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

1989 (1)

A. Hardy, D. F. Welch, W. Streifer, IEEE J. Quantum Electron. 25, 2096 (1989).
[CrossRef]

1986 (1)

T. Suhara, H. Nishihara, IEEE J. Quantum Electron. QE-22, 845 (1986).
[CrossRef]

1976 (1)

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976).
[CrossRef]

1975 (1)

P. Zory, L. D. Comerford, IEEE J. Quantum Electron. QE-11, 451 (1975).
[CrossRef]

Burnham, R. D.

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976).
[CrossRef]

Comerford, L. D.

P. Zory, L. D. Comerford, IEEE J. Quantum Electron. QE-11, 451 (1975).
[CrossRef]

Eriksson, N.

M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
[CrossRef]

T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
[CrossRef]

Hagberg, M.

M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
[CrossRef]

T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
[CrossRef]

Hardy, A.

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

A. Hardy, D. F. Welch, W. Streifer, IEEE J. Quantum Electron. 25, 2096 (1989).
[CrossRef]

Kjellberg, T.

M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
[CrossRef]

M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
[CrossRef]

T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
[CrossRef]

Larsson, A. G.

M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
[CrossRef]

T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
[CrossRef]

Matsumoto, M.

M. Matsumoto, IEEE J. Quantum Electron. 28, 2016 (1992).
[CrossRef]

Mehuys, D.

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

Nishihara, H.

T. Suhara, H. Nishihara, IEEE J. Quantum Electron. QE-22, 845 (1986).
[CrossRef]

Parke, R.

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

Scifres, D. R.

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976).
[CrossRef]

Streifer, W.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

A. Hardy, D. F. Welch, W. Streifer, IEEE J. Quantum Electron. 25, 2096 (1989).
[CrossRef]

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976).
[CrossRef]

Suhara, T.

T. Suhara, H. Nishihara, IEEE J. Quantum Electron. QE-22, 845 (1986).
[CrossRef]

Waarts, R.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

Waarts, R. G.

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

Welch, D. F.

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

A. Hardy, D. F. Welch, W. Streifer, IEEE J. Quantum Electron. 25, 2096 (1989).
[CrossRef]

Yariv, A.

See, for example,A. Yariv, Optical Electronics, 3rd ed. (CBS, New York, 1985).

Zory, P.

P. Zory, L. D. Comerford, IEEE J. Quantum Electron. QE-11, 451 (1975).
[CrossRef]

Electron. Lett. (3)

M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, Electron. Lett. 30, 570 (1994).
[CrossRef]

R. Parke, R. Waarts, D. F. Welch, A. Hardy, W. Streifer, Electron. Lett. 26, 125 (1990).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, Electron. Lett. 30, 410 (1994).
[CrossRef]

IEEE J. Quantum Electron. (5)

M. Matsumoto, IEEE J. Quantum Electron. 28, 2016 (1992).
[CrossRef]

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976).
[CrossRef]

A. Hardy, D. F. Welch, W. Streifer, IEEE J. Quantum Electron. 25, 2096 (1989).
[CrossRef]

P. Zory, L. D. Comerford, IEEE J. Quantum Electron. QE-11, 451 (1975).
[CrossRef]

T. Suhara, H. Nishihara, IEEE J. Quantum Electron. QE-22, 845 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Kjellberg, M. Hagberg, N. Eriksson, A. G. Larsson, IEEE Photon. Technol. Lett. 5, 1149 (1993).
[CrossRef]

D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, IEEE Photon. Technol. Lett. 3, 342 (1991).
[CrossRef]

Other (1)

See, for example,A. Yariv, Optical Electronics, 3rd ed. (CBS, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) a waveguide with a surface grating, (b) the device structure of the surface-emitting laser, and (c) the structure used for determination of the optical power transmitted through the semitransparent FOG into the detuned SOG.

Fig. 2
Fig. 2

Wave-vector diagram illustrating the onset of power loss through second-order diffraction into the substrate.

Fig. 3
Fig. 3

Scanning-electron-microscopy micrographs of the FOG (upper) and the SOG (lower).

Fig. 4
Fig. 4

Average SEE for various detuning from the SOG resonance. The variations among individual lasers are indicated on the bars.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Parameters for a Detuning of −10 nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ 1 a , s = arcsin ( n eff k - K n a , s k ) ,
2 K = n c k + n eff k .
Λ crit = 2 λ 0 n c + n eff .
θ 1 a crit = arcsin ( n eff - n c 2 n a ) = arcsin ( n eff - n c 2 )

Metrics