Abstract

The form birefringence of subwavelength period gratings can be applied to realize phase-retardation elements. Previous researchers used high-frequency surface relief structures or sinusoidal gratings formed in photoresist to fabricate phase-retardation elements. We present the performance of a volume holographic quarter-wave phase-retardation element formed in a dichromated gelatin emulsion for operation at 632.8 nm. To our knowledge this is the first demonstration of a retardation element exhibiting this magnitude of phase delay in a volume material. The phase properties of volume gratings are investigated by both effective medium theory and rigorous coupled-wave analysis.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1983), p. 705.
  2. D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
    [CrossRef]
  3. R. C. Enger, S. K. Case, Appl. Opt. 22, 3220 (1983).
    [CrossRef] [PubMed]
  4. L. H. Cescato, E. Gluch, N. Streibl, Appl. Opt. 29, 3286 (1990).
    [CrossRef] [PubMed]
  5. N. Capolla, A. Beauregard, J.-M. Lavoie, Proc. Soc. Photo-Opt. Instrum. Eng. 2042, 490 (1994).
  6. E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
    [CrossRef]
  7. G. Campbell, “Polarization properties of volume holograms,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).
  8. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  9. T. J. Kim, E. W. Campbell, R. K. Kostuk, Proc. Soc. Photo-Opt. Instrum. Eng. 1914, 91 (1993).
  10. G. Campbell, T. J. Kim, R. K. Kostuk, Appl. Opt. 34, 2548 (1995).
    [CrossRef] [PubMed]
  11. M. G. Moharam, T. K. Gaylord, J. Opt. Soc. Am. 73, 1105 (1983).
    [CrossRef]

1995 (1)

1994 (1)

N. Capolla, A. Beauregard, J.-M. Lavoie, Proc. Soc. Photo-Opt. Instrum. Eng. 2042, 490 (1994).

1993 (1)

T. J. Kim, E. W. Campbell, R. K. Kostuk, Proc. Soc. Photo-Opt. Instrum. Eng. 1914, 91 (1993).

1992 (1)

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

1990 (1)

1983 (3)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Beauregard, A.

N. Capolla, A. Beauregard, J.-M. Lavoie, Proc. Soc. Photo-Opt. Instrum. Eng. 2042, 490 (1994).

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1983), p. 705.

Campbell, E. W.

T. J. Kim, E. W. Campbell, R. K. Kostuk, Proc. Soc. Photo-Opt. Instrum. Eng. 1914, 91 (1993).

Campbell, G.

G. Campbell, T. J. Kim, R. K. Kostuk, Appl. Opt. 34, 2548 (1995).
[CrossRef] [PubMed]

G. Campbell, “Polarization properties of volume holograms,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

Capolla, N.

N. Capolla, A. Beauregard, J.-M. Lavoie, Proc. Soc. Photo-Opt. Instrum. Eng. 2042, 490 (1994).

Case, S. K.

Cescato, L. H.

Enger, R. C.

Flanders, D. C.

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Gaylord, T. K.

Gluch, E.

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

L. H. Cescato, E. Gluch, N. Streibl, Appl. Opt. 29, 3286 (1990).
[CrossRef] [PubMed]

Haidner, H.

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

Kim, T. J.

G. Campbell, T. J. Kim, R. K. Kostuk, Appl. Opt. 34, 2548 (1995).
[CrossRef] [PubMed]

T. J. Kim, E. W. Campbell, R. K. Kostuk, Proc. Soc. Photo-Opt. Instrum. Eng. 1914, 91 (1993).

Kiper, P.

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kostuk, R. K.

G. Campbell, T. J. Kim, R. K. Kostuk, Appl. Opt. 34, 2548 (1995).
[CrossRef] [PubMed]

T. J. Kim, E. W. Campbell, R. K. Kostuk, Proc. Soc. Photo-Opt. Instrum. Eng. 1914, 91 (1993).

Lavoie, J.-M.

N. Capolla, A. Beauregard, J.-M. Lavoie, Proc. Soc. Photo-Opt. Instrum. Eng. 2042, 490 (1994).

Moharam, M. G.

Sheridan, J. T.

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

Streibl, N.

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

L. H. Cescato, E. Gluch, N. Streibl, Appl. Opt. 29, 3286 (1990).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1983), p. 705.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

E. Gluch, H. Haidner, P. Kiper, J. T. Sheridan, N. Streibl, Opt. Commun. 89, 173 (1992).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

N. Capolla, A. Beauregard, J.-M. Lavoie, Proc. Soc. Photo-Opt. Instrum. Eng. 2042, 490 (1994).

T. J. Kim, E. W. Campbell, R. K. Kostuk, Proc. Soc. Photo-Opt. Instrum. Eng. 1914, 91 (1993).

Other (2)

G. Campbell, “Polarization properties of volume holograms,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1983), p. 705.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Grating geometry for a volume hologram with slanted fringes (ϕ ≠ 90°) and a conically incident wave (δ ≠ 0°).

Fig. 2
Fig. 2

Schematic diagram of the phase-measurement setup.

Fig. 3
Fig. 3

Phase retardation as a function of exposed energy of three different emulsion thicknesses.

Fig. 4
Fig. 4

Comparison of theoretical calculations with experimental results for volume holographic quarter-wave phase retardation elements as a function of grating spacing: solid curve, RCWA results; asterisks, experimental data; cutoff period, Λc = 0.465 μm.

Fig. 5
Fig. 5

Wavelength dependence for a quarter-wave phase-retardation element (Λ = 0.286 μm): solid curve, RCWA results; asterisks, phase shift of volume gratings; open circles, shift of a commercial quarter-wave plate. by the solid curve in Fig. 4. The experimental data denoted by asterisks in Fig. 4 match the trend predicted

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

| | = 0 ,
= 0 2 - 1 2 ,
Δ n = n - n | | = - | | .
Δ n = 0 2 - 1 2 4 - 0 .
Δ n - 1 4 1 2 n 0 3 = - n 1 2 n 0 ,
E m = E TE m exp [ j ( k m · r - ω t + Φ TE m ) ] n ^ | | m + [ E TM m exp [ j ( k m · r - ω t + Φ TM m ) ] n ^ m ,
Φ TE m = tan - 1 [ imag ( E TE m ) real ( E TE m ) ] ,
Φ TM m = tan - 1 [ imag ( E TM m ) real ( E TM m ) ] .
Δ Φ ( TE - TM ) m = Φ TE m - Φ TM m .
Δ n = λ 0 2 π d Δ Φ ,

Metrics