Abstract

We analyze the transition from passive mode locking into the novel modulational-instability regime of erbium-doped fiber lasers. By including in the cavity an anisotropic loss, we observed, depending on the polarization setting, the generation of either single pulses as short as 435 fs or a continuous-wave train of 3.5-ps-long solitons at a repetition rate of 76 GHz. Even with no anisotropic losses in the cavity, soliton trains at a repetition rate of as high as 130 GHz were still observed. We believe that this is the first observation of a self-induced modulational-instability laser.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Pfeiffer, G. Veith, Electron. Lett. 29, 1849 (1993).
    [CrossRef]
  2. M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
    [CrossRef]
  3. K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  4. A. B. Grudinin, D. J. Richardson, D. N. Payne, Electron. Lett. 29, 1860 (1993).
    [CrossRef]
  5. M. J. Guy, D. U. Noske, J. R. Taylor, Opt. Lett. 18, 1447 (1993).
    [CrossRef] [PubMed]
  6. S. C. Chernikov, P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
    [CrossRef]
  7. M. Nakazawa, K. Suzuki, H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
    [CrossRef]
  8. M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
    [CrossRef]
  9. M. Haelterman, S. Trillo, S. Wabnitz, Opt. Lett. 17, 747 (1992).
  10. M. Haelterman, S. Trillo, S. Wabnitz, Phys. Rev. A 47, 2344 (1993).
    [CrossRef] [PubMed]
  11. M. Romagnoli, M. Midrio, P. Franco, F. Fontana, J. Opt. Soc. Am. B 12, 1732 (1995).
    [CrossRef]
  12. A. Hasegawa, W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).
    [CrossRef]

1995 (1)

1993 (6)

M. Haelterman, S. Trillo, S. Wabnitz, Phys. Rev. A 47, 2344 (1993).
[CrossRef] [PubMed]

Th. Pfeiffer, G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, Opt. Lett. 18, 1080 (1993).
[CrossRef] [PubMed]

A. B. Grudinin, D. J. Richardson, D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

M. J. Guy, D. U. Noske, J. R. Taylor, Opt. Lett. 18, 1447 (1993).
[CrossRef] [PubMed]

1992 (1)

M. Haelterman, S. Trillo, S. Wabnitz, Opt. Lett. 17, 747 (1992).

1991 (1)

1989 (2)

M. Nakazawa, K. Suzuki, H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
[CrossRef]

1980 (1)

A. Hasegawa, W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).
[CrossRef]

Brinkman, W. F.

A. Hasegawa, W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).
[CrossRef]

Chernikov, S. C.

Fontana, F.

Franco, P.

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Guy, M. J.

Haelterman, M.

M. Haelterman, S. Trillo, S. Wabnitz, Phys. Rev. A 47, 2344 (1993).
[CrossRef] [PubMed]

M. Haelterman, S. Trillo, S. Wabnitz, Opt. Lett. 17, 747 (1992).

Hasegawa, A.

A. Hasegawa, W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).
[CrossRef]

Haus, H. A.

K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, Opt. Lett. 18, 1080 (1993).
[CrossRef] [PubMed]

M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

Ippen, E. P.

Kimura, Y.

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[CrossRef]

Kubota, H.

M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
[CrossRef]

Mamyshev, P. V.

Midrio, M.

Nakazawa, M.

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

Nelson, L. E.

Noske, D. U.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Pfeiffer, Th.

Th. Pfeiffer, G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Romagnoli, M.

Suzuki, K.

M. Nakazawa, K. Suzuki, H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
[CrossRef]

Tamura, K.

Taylor, J. R.

Trillo, S.

M. Haelterman, S. Trillo, S. Wabnitz, Phys. Rev. A 47, 2344 (1993).
[CrossRef] [PubMed]

M. Haelterman, S. Trillo, S. Wabnitz, Opt. Lett. 17, 747 (1992).

Veith, G.

Th. Pfeiffer, G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

Wabnitz, S.

M. Haelterman, S. Trillo, S. Wabnitz, Phys. Rev. A 47, 2344 (1993).
[CrossRef] [PubMed]

M. Haelterman, S. Trillo, S. Wabnitz, Opt. Lett. 17, 747 (1992).

Yoshida, E.

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[CrossRef]

Electron. Lett. (3)

Th. Pfeiffer, G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Nakazawa, K. Suzuki, H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, IEEE J. Quantum Electron. 25, 2045 (1989).
[CrossRef]

A. Hasegawa, W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Phys. Rev. A (1)

M. Haelterman, S. Trillo, S. Wabnitz, Phys. Rev. A 47, 2344 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Autocorrelation trace (pulse width, 435 fs) and (b) spectrum (spectral width, 6.8 nm) of the pulsed emission from the passively mode-locked EDFL. SH, second harmonic.

Fig. 3
Fig. 3

(a) Autocorrelation trace and (b) spectrum of the 76-GHz train of solitons emitted by the hybridly mode-locked EDFL.

Fig. 4
Fig. 4

(a) Autocorrelation trace and (b) spectrum of the SIMIL. The repetition rate is 130 GHz.

Fig. 5
Fig. 5

Square of the modulational-instability frequency as a function of intracavity average power for the SIMIL for β2 = −1.85 ps/km (filled circles), −3.1 ps/km (filled squares), and −5 ps2/km (filled triangles). The inset shows a typical autocorrelation trace.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν MI 2 = 1 2 π 2 γ P 0 β 2 ,

Metrics