Abstract

A picosecond laser system that will generate high-power tunable IR pulses with bandwidths suitable for spectroscopic applications is discussed. The system is based on white-light continuum generation in ethylene glycol and optical parametric amplification in potassium titanyl phosphate. The nonlinear-optical processes are driven by a regeneratively amplified Ti:sapphire laser that produces 1.7-ps pulses at a repetition rate of 1 kHz. Energies as high as 40 and 12 μJ have been achieved over the signal (1.02–1.16-μm) and idler (2.6–3.7-μm) tuning ranges, respectively. The IR beam temporal and spatial characteristics are also presented.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
    [Crossref] [PubMed]
  2. Q. Du, E. Freysz, Y. R. Shen, Science 264, 826 (1994).
    [Crossref] [PubMed]
  3. D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
    [Crossref]
  4. H. M. van Driel, G. Mak, Can. J. Phys. 71, 47 (1993).
    [Crossref]
  5. R. Laenen, K. Wolfrum, A. Seilmeier, A. Laubereau, J. Opt. Soc. Am. B 10, 2151 (1993).
    [Crossref]
  6. H.-J. Krause, W. Daum, Appl. Phys. B 56, 8 (1993).
    [Crossref]
  7. H. Vanherzeele, Appl. Opt. 29, 2246 (1990).
    [Crossref] [PubMed]
  8. U. Sukowski, A. Seilmeier, Appl. Phys. B 50, 541 (1990).
    [Crossref]
  9. F. Seifert, V. Petrov, M. Woerner, Opt. Lett. 19, 2009 (1994).
    [Crossref] [PubMed]
  10. S. Takeuchi, T. Kobayashi, J. Appl. Phys. 75, 2757 (1994).
    [Crossref]
  11. P. Hamm, C. Lauterwasser, W. Zinth, Opt. Lett. 18, 1943 (1993).
    [Crossref] [PubMed]
  12. H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, Appl. Opt. 27, 3314 (1988).
    [Crossref] [PubMed]

1994 (3)

Q. Du, E. Freysz, Y. R. Shen, Science 264, 826 (1994).
[Crossref] [PubMed]

F. Seifert, V. Petrov, M. Woerner, Opt. Lett. 19, 2009 (1994).
[Crossref] [PubMed]

S. Takeuchi, T. Kobayashi, J. Appl. Phys. 75, 2757 (1994).
[Crossref]

1993 (5)

P. Hamm, C. Lauterwasser, W. Zinth, Opt. Lett. 18, 1943 (1993).
[Crossref] [PubMed]

D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
[Crossref]

H. M. van Driel, G. Mak, Can. J. Phys. 71, 47 (1993).
[Crossref]

R. Laenen, K. Wolfrum, A. Seilmeier, A. Laubereau, J. Opt. Soc. Am. B 10, 2151 (1993).
[Crossref]

H.-J. Krause, W. Daum, Appl. Phys. B 56, 8 (1993).
[Crossref]

1991 (1)

R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
[Crossref] [PubMed]

1990 (2)

H. Vanherzeele, Appl. Opt. 29, 2246 (1990).
[Crossref] [PubMed]

U. Sukowski, A. Seilmeier, Appl. Phys. B 50, 541 (1990).
[Crossref]

1988 (1)

Bierlein, J. D.

Daum, W.

H.-J. Krause, W. Daum, Appl. Phys. B 56, 8 (1993).
[Crossref]

Du, Q.

Q. Du, E. Freysz, Y. R. Shen, Science 264, 826 (1994).
[Crossref] [PubMed]

Eisenthal, K. B.

D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Freysz, E.

Q. Du, E. Freysz, Y. R. Shen, Science 264, 826 (1994).
[Crossref] [PubMed]

Gutow, J. H.

D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Hamm, P.

Heinz, T. F.

D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Huang, J. Y.

R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
[Crossref] [PubMed]

Kobayashi, T.

S. Takeuchi, T. Kobayashi, J. Appl. Phys. 75, 2757 (1994).
[Crossref]

Krause, H.-J.

H.-J. Krause, W. Daum, Appl. Phys. B 56, 8 (1993).
[Crossref]

Laenen, R.

Laubereau, A.

Lauterwasser, C.

Mak, G.

H. M. van Driel, G. Mak, Can. J. Phys. 71, 47 (1993).
[Crossref]

Petrov, V.

Seifert, F.

Seilmeier, A.

Shen, Y. R.

Q. Du, E. Freysz, Y. R. Shen, Science 264, 826 (1994).
[Crossref] [PubMed]

R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
[Crossref] [PubMed]

Sukowski, U.

U. Sukowski, A. Seilmeier, Appl. Phys. B 50, 541 (1990).
[Crossref]

Superfine, R.

R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
[Crossref] [PubMed]

Takeuchi, S.

S. Takeuchi, T. Kobayashi, J. Appl. Phys. 75, 2757 (1994).
[Crossref]

van Driel, H. M.

H. M. van Driel, G. Mak, Can. J. Phys. 71, 47 (1993).
[Crossref]

Vanherzeele, H.

Woerner, M.

Wolfrum, K.

Zhang, D.

D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Zinth, W.

Zumsteg, F. C.

Appl. Opt. (2)

Appl. Phys. B (2)

U. Sukowski, A. Seilmeier, Appl. Phys. B 50, 541 (1990).
[Crossref]

H.-J. Krause, W. Daum, Appl. Phys. B 56, 8 (1993).
[Crossref]

Can. J. Phys. (1)

H. M. van Driel, G. Mak, Can. J. Phys. 71, 47 (1993).
[Crossref]

J. Appl. Phys. (1)

S. Takeuchi, T. Kobayashi, J. Appl. Phys. 75, 2757 (1994).
[Crossref]

J. Chem. Phys. (1)

D. Zhang, J. H. Gutow, T. F. Heinz, K. B. Eisenthal, J. Chem. Phys. 98, 5099 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
[Crossref] [PubMed]

Science (1)

Q. Du, E. Freysz, Y. R. Shen, Science 264, 826 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the optical parametric amplification system.

Fig. 2
Fig. 2

Experimental and theoretical tuning curves for type II (o, idler; e, signal; o, pump) phase matching in KTP. The open circles are the experimental data for the signal beam, and the filled circles are the experimental data for the idler beam. The solid curves are the theoretical tuning curves from the Sellmeier equations (see text). The KTP crystals are 5 mm × 5 mm × 5mm and cut at θ = 42.65° and ϕ = 0°.

Fig. 3
Fig. 3

Output energy of signal (open circles) and idler (filled circles) beams for the experimental tuning range in Fig. 2. Measured energies were corrected for filter losses, then plotted.

Metrics