Abstract

We report a novel integrated Q-switched laser constructed from a bulk domain-inverted single Nd:LiTaO3 crystal that combines the laser gain and the electro-optic effect. The Q of the cavity is controlled electro-optically by exploitation of the deflection that occurs at the boundary of two oppositely directed domains under the application of an electric field. The integrated Q-switching element, with dimensions of 4.1 mm × 4.6 mm × 1 mm, generates 22-ns pulses at 1.08 μm with a peak power of 64 W and an operating voltage of ~600 V. The output is seen to be completely free from prelasing or afterpulsing.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Scheps, J. Myers, IEEE J. Quantum Electron. 26, 413 (1990).
    [CrossRef]
  2. W. M. Grossman, M. Gifford, R. W. Wallace, Opt. Lett. 15, 622 (1990).
    [CrossRef] [PubMed]
  3. J. J. Zayhowski, C. Dill, Opt. Lett. 17, 1201 (1992).
    [CrossRef] [PubMed]
  4. T. Taira, T. Kobayashi, IEEE J. Quantum Electron. 30, 800 (1994).
    [CrossRef]
  5. A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
    [CrossRef]
  6. J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1427 (1994).
    [CrossRef] [PubMed]
  7. Y. C. Chen, S. Li, K. K. Lee, S. Zhou, Opt. Lett. 18, 1418 (1993).
    [CrossRef] [PubMed]
  8. L. F. Johnson, A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
    [CrossRef]
  9. S. Miyazawa, K. Kubodera, Jpn. J. Cryst. Growth 20, 53 (1993).
  10. K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
    [CrossRef]

1995 (1)

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

1994 (2)

T. Taira, T. Kobayashi, IEEE J. Quantum Electron. 30, 800 (1994).
[CrossRef]

J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1427 (1994).
[CrossRef] [PubMed]

1993 (2)

Y. C. Chen, S. Li, K. K. Lee, S. Zhou, Opt. Lett. 18, 1418 (1993).
[CrossRef] [PubMed]

S. Miyazawa, K. Kubodera, Jpn. J. Cryst. Growth 20, 53 (1993).

1992 (1)

1990 (2)

1987 (1)

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

1969 (1)

L. F. Johnson, A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

Abedin, K. S.

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Ballman, A. A.

L. F. Johnson, A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

Chen, Y. C.

Cordova-Plaza, A.

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

Digonnet, M. J. F.

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

Dill, C.

Fukuda, T.

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Gifford, M.

Grossman, W. M.

Ito, H.

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Johnson, L. F.

L. F. Johnson, A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

Kobayashi, T.

T. Taira, T. Kobayashi, IEEE J. Quantum Electron. 30, 800 (1994).
[CrossRef]

Kubodera, K.

S. Miyazawa, K. Kubodera, Jpn. J. Cryst. Growth 20, 53 (1993).

Lee, K. K.

Li, S.

Maeda, T.

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Miyazawa, S.

S. Miyazawa, K. Kubodera, Jpn. J. Cryst. Growth 20, 53 (1993).

Myers, J.

R. Scheps, J. Myers, IEEE J. Quantum Electron. 26, 413 (1990).
[CrossRef]

Sato, M.

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Scheps, R.

R. Scheps, J. Myers, IEEE J. Quantum Electron. 26, 413 (1990).
[CrossRef]

Shaw, H. J.

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

Shimamura, K.

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Taira, T.

T. Taira, T. Kobayashi, IEEE J. Quantum Electron. 30, 800 (1994).
[CrossRef]

Wallace, R. W.

Zayhowski, J. J.

Zhou, S.

IEEE J. Quantum Electron. (3)

T. Taira, T. Kobayashi, IEEE J. Quantum Electron. 30, 800 (1994).
[CrossRef]

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

R. Scheps, J. Myers, IEEE J. Quantum Electron. 26, 413 (1990).
[CrossRef]

J. Appl. Phys. (2)

L. F. Johnson, A. A. Ballman, J. Appl. Phys. 40, 297 (1969).
[CrossRef]

K. S. Abedin, M. Sato, H. Ito, T. Maeda, K. Shimamura, T. Fukuda, J. Appl. Phys. 78, 691 (1995).
[CrossRef]

Jpn. J. Cryst. Growth (1)

S. Miyazawa, K. Kubodera, Jpn. J. Cryst. Growth 20, 53 (1993).

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the integrated electro-optic Q-switching and lasing crystal. The axis of optical propagation is x, and the electric field is applied along z. The angle of inclination Θ of the boundary is 3°. (a) Exploded view. (b) Schematic explaining the deflection caused by the domain boundary under the applied field. Nd:LT, Nd:LiTaO3 sample.

Fig. 2
Fig. 2

Photograph of the etched z faces of the domain-inverted Nd:LiTaO3 sample. Pits become revealed on the −z faces after etching. The domain-inverted regions are shown by arrows.

Fig. 3
Fig. 3

Schematic of the laser resonator.

Fig. 4
Fig. 4

Output power versus the applied dc voltage for a fixed absorbed pump power of 300 mW, showing the effect of applied voltage on the Q of the cavity.

Fig. 5
Fig. 5

Waveform of the Q-switched output pulse, showing (a) the absence of prelasing and afterpulsing and (b) the measured pulse width of 22.6 ns. The bandwidths of the photodetector and the oscilloscope are 125 and 150 MHz, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n 3 = r 33 n 3 3 E 3 / 2 ,
θ = 2 Δ n 3 / Θ = r 33 n 3 3 E 3 / Θ .

Metrics