Abstract

Bragg gratings have been fabricated in As2S3 optical fibers through the photoinduced refractive-index change process. Bragg filters in the fiber show a more-ideal response than those fabricated in the corresponding bulk material. Some features characteristic of chalcogenide fibers and Ge-doped oxide fibers are discussed comparatively.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).
  2. K. Shiramine, H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 64, 1771 (1994).
    [Crossref]
  3. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), p. 166.
  4. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [Crossref]
  5. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
    [Crossref]
  6. V. B. Neustruev, J. Phys. Condens. Matter 6, 6901 (1994).
    [Crossref]
  7. The nominal composition is reported as As37.4S62.6. Because the composition is approximately As2S3 and physical properties in As–S glasses do not change critically with the composition,8 we may regard the composition as As2S3 in this Letter.
  8. K. Tanaka, Y. Ohtsuka, Thin Solid Films 57, 59 (1979).
    [Crossref]
  9. More than 30 samples were prepared, but prominent Bragg gratings could be fabricated only in a few samples. The reason may be due to residual strains generated by polishing procedures. Note that chalcogenide glasses are softer than oxide glasses.
  10. J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), p. 159.
    [Crossref]
  11. H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
    [Crossref]
  12. H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
    [Crossref]
  13. The fiber consisted of a core of As38.0S62.0 with 7.7-μm diameter and a cladding of As37.4S62.6 with 125-μm diameter; the length was ~0.5 mm. Photoinduced dips were not prominent. In this fiber the photoinduced refractive-index change can occur in both the core and the cladding region,8 and accordingly the dip may not grow.
  14. G. J. Morgan, G. K. White, J. G. Collins, Philos. Mag. B 43, 1035 (1981).

1994 (5)

K. Shiramine, H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 64, 1771 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
[Crossref]

V. B. Neustruev, J. Phys. Condens. Matter 6, 6901 (1994).
[Crossref]

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[Crossref]

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[Crossref]

1990 (1)

K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).

1981 (1)

G. J. Morgan, G. K. White, J. G. Collins, Philos. Mag. B 43, 1035 (1981).

1979 (1)

K. Tanaka, Y. Ohtsuka, Thin Solid Films 57, 59 (1979).
[Crossref]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Collins, J. G.

G. J. Morgan, G. K. White, J. G. Collins, Philos. Mag. B 43, 1035 (1981).

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
[Crossref]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Hisakuni, H.

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[Crossref]

K. Shiramine, H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 64, 1771 (1994).
[Crossref]

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
[Crossref]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
[Crossref]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
[Crossref]

Morgan, G. J.

G. J. Morgan, G. K. White, J. G. Collins, Philos. Mag. B 43, 1035 (1981).

Neustruev, V. B.

V. B. Neustruev, J. Phys. Condens. Matter 6, 6901 (1994).
[Crossref]

Ohtsuka, Y.

K. Tanaka, Y. Ohtsuka, Thin Solid Films 57, 59 (1979).
[Crossref]

Shiramine, K.

K. Shiramine, H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 64, 1771 (1994).
[Crossref]

Tanaka, K.

K. Shiramine, H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 64, 1771 (1994).
[Crossref]

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[Crossref]

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[Crossref]

K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).

K. Tanaka, Y. Ohtsuka, Thin Solid Films 57, 59 (1979).
[Crossref]

Tauc, J.

J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), p. 159.
[Crossref]

White, G. K.

G. J. Morgan, G. K. White, J. G. Collins, Philos. Mag. B 43, 1035 (1981).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), p. 166.

Appl. Phys. Lett. (3)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

K. Shiramine, H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 64, 1771 (1994).
[Crossref]

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[Crossref]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, J. Appl. Phys. 76, 73 (1994).
[Crossref]

J. Phys. Condens. Matter (1)

V. B. Neustruev, J. Phys. Condens. Matter 6, 6901 (1994).
[Crossref]

Philos. Mag. B (1)

G. J. Morgan, G. K. White, J. G. Collins, Philos. Mag. B 43, 1035 (1981).

Rev. Solid State Sci. (1)

K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).

Solid State Commun. (1)

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[Crossref]

Thin Solid Films (1)

K. Tanaka, Y. Ohtsuka, Thin Solid Films 57, 59 (1979).
[Crossref]

Other (5)

More than 30 samples were prepared, but prominent Bragg gratings could be fabricated only in a few samples. The reason may be due to residual strains generated by polishing procedures. Note that chalcogenide glasses are softer than oxide glasses.

J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), p. 159.
[Crossref]

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), p. 166.

The nominal composition is reported as As37.4S62.6. Because the composition is approximately As2S3 and physical properties in As–S glasses do not change critically with the composition,8 we may regard the composition as As2S3 in this Letter.

The fiber consisted of a core of As38.0S62.0 with 7.7-μm diameter and a cladding of As37.4S62.6 with 125-μm diameter; the length was ~0.5 mm. Photoinduced dips were not prominent. In this fiber the photoinduced refractive-index change can occur in both the core and the cladding region,8 and accordingly the dip may not grow.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission spectra of As2S3 in (a) a fiber form and (b) a bulk flake after laser irradiation. The fiber is 5.4 mm in length, and the bulk is 50 μm in thickness. Small dips near 685 nm are due to the instrument.

Fig. 2
Fig. 2

Dependences of ΔT/T (open circles) and T (filled circles) on the fiber length. Also shown is ΔT/T in bulk glasses (solid curve with no symbols) as a function of the sample thickness and theoretical ΔT/T and T (dashed curves) as a function of the grating length, in which it is assumed that πΔn/λ = 10 mm−1, i.e., Δn = 0.002, the absorption coefficient is 1 cm−1,10 and the refractive index is 2.6.8,10

Fig. 3
Fig. 3

Schematic illustrations of the Gaussian intensity profile of laser light (left) and the refractive-index distributions (right) in (a) a fiber and (b) a bulk.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = n + Δ n     cos ( 2 π x / Λ )
Δ T / T tanh 2 ( π L Δ n / λ ) ,
Δ λ / λ 2 Δ n / n ,

Metrics