Abstract

We introduce the technique of coded-wavelength multiplex holography. We encode each wavelength with a discrete angular spectrum of plane waves, so that the total number of multiplexed holographic pages equals the number of wavelengths multiplied by the number of discrete wave vectors at each wavelength. Encoding with different propagation angles further permits one to utilize the properties of grating degeneracy to assemble an image from a mosaic of smaller images and to multiplex such images at different wavelengths.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, L. Hesselink, Science 265, 749 (1994).
    [CrossRef] [PubMed]
  2. G. A. Rakuljic, V. Leyva, A. Yariv, Opt. Lett. 17, 1471 (1992).
    [CrossRef] [PubMed]
  3. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
    [CrossRef]
  4. F. H. Mok, Opt. Lett. 18, 915 (1993).
    [CrossRef] [PubMed]
  5. C. C. Eaglesfield, “Holographic data storage with an orthogonally coded reference beam,” U.S. patent3,612,641 (October12, 1971).A. E. Krasnov, Kvantovaya Elektron. (Moscow) 4, 2011 (1977) [Sov. J. Quantum Electron. 7, 1147 (1977)].
  6. L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
    [CrossRef]
  7. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, L. Hesselink, J. Opt. Soc. Am. B 11, 1820 (1994).
    [CrossRef]
  8. Figure 1(d) extends the concepts embodied in reciprocal space diagrams used in Ref. 2 to the case of coded-wavelength multiplexing.
  9. K. Curtis, C. Gu, D. Psaltis, Opt. Lett. 18, 1001 (1993).
    [CrossRef] [PubMed]
  10. S. Campbell, X. Yi, P. Yeh, Opt. Lett. 19, 2161 (1994).
    [CrossRef] [PubMed]
  11. D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
    [CrossRef] [PubMed]

1994 (3)

1993 (3)

1992 (1)

1990 (1)

D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
[CrossRef] [PubMed]

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Aharoni, A.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Bashaw, M. C.

M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, L. Hesselink, J. Opt. Soc. Am. B 11, 1820 (1994).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Brady, D.

D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
[CrossRef] [PubMed]

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Campbell, S.

Curtis, K.

Eaglesfield, C. C.

C. C. Eaglesfield, “Holographic data storage with an orthogonally coded reference beam,” U.S. patent3,612,641 (October12, 1971).A. E. Krasnov, Kvantovaya Elektron. (Moscow) 4, 2011 (1977) [Sov. J. Quantum Electron. 7, 1147 (1977)].

Gu, C.

Gu, X.

D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
[CrossRef] [PubMed]

Heanue, J. F.

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, L. Hesselink, J. Opt. Soc. Am. B 11, 1820 (1994).
[CrossRef]

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Lee, S.

D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
[CrossRef] [PubMed]

Leyva, V.

Mok, F. H.

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Psaltis, D.

K. Curtis, C. Gu, D. Psaltis, Opt. Lett. 18, 1001 (1993).
[CrossRef] [PubMed]

D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
[CrossRef] [PubMed]

Rakuljic, G. A.

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Walkup, J. F.

Yariv, A.

Yeh, P.

Yi, X.

Appl. Phys. Lett. (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

D. Psaltis, D. Brady, X. Gu, S. Lee, Nature (London) 343, 325 (1990).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Other (2)

C. C. Eaglesfield, “Holographic data storage with an orthogonally coded reference beam,” U.S. patent3,612,641 (October12, 1971).A. E. Krasnov, Kvantovaya Elektron. (Moscow) 4, 2011 (1977) [Sov. J. Quantum Electron. 7, 1147 (1977)].

Figure 1(d) extends the concepts embodied in reciprocal space diagrams used in Ref. 2 to the case of coded-wavelength multiplexing.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-dimensional reciprocal space diagrams showing K = σρ. Each circle shows the locus of all grating vectors that may be written with a particular reference wave vector, pointing to the origin. A representative signal wave vector is also shown. (a) The (signal, reference) wave-vector pairs (σ, ρ) are degenerate to the wave-vector pairs (−ρ, −σ), so that a grating written with the first pair will also result in reconstruction with the second. (b) Storage of multiple signals so that their grating spectra do not overlap. (c) Reconstruction of degenerate signals, in which a reference wave vector is approximately Bragg matched to a number of signal spectra. (d) Angular-encoded wavelength multiplexing, in which the grating vector spectra, shown in shaded strips, are unique for each stored holographic page; larger circles represent shorter wavelengths.

Fig. 2
Fig. 2

Counterpropagating volume Fourier holographic arrangement with a Fourier telescope in the reference beam path.

Fig. 3
Fig. 3

Experimental results. A resolution test target is stored in different orientations at four angle–wavelength combinations. Shown is the output at (a) λ1, θ1; (b) λ1, θ2; (c) λ2, θ1; and (d) λ2, θ2.

Fig. 4
Fig. 4

Experimental results. A resolution test target is stored at four different angles with the same wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S i ( r ) = S ^ i ( σ ) exp ( i σ · r ) d 3 σ ,
R i ( r ) = l R i l exp ( i ρ l · r ) ,
A ^ c ( σ ) = j l m R j l * R c m B m l ( σ ) S j ( σ - Δ ρ m l ) ,
B m l ( σ ) = C exp [ i ξ m l ( σ ) ] sinc [ i ξ m l ( σ ) ] ,
ξ m l ( σ ) - L 2 ( σ · Δ ρ m l σ z + β m 2 - β l 2 2 σ z ) ,

Metrics