Abstract

We describe an optically assisted folding-flash analog-to-digital converter. The periodic transfer function of the Mach–Zehnder interferometer is used to perform analog folding on the electronic signal to be quantized. A novel analog encoding scheme for efficient generation of gray code digital data is proposed. The new encoding scheme eliminates the requirement for interferometers with ultralow Vπ, which, so far, has hindered the development of such systems. The encoding concept is experimentally demonstrated through the use of LiNbO3 modulators.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, IEEE J. Quantum Electron. QE-15, 210 (1979).
    [Crossref]
  2. G. D. H. King, R. Cebulski, Electron. Lett. 18, 1099 (1982).
    [Crossref]
  3. R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
    [Crossref]
  4. R. G. Walker, I. Bennion, A. C. Carter, Electron. Lett. 25, 1443 (1989).
    [Crossref]
  5. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 18, p. 704.
  6. See“Specification for LiNbO3 modulators from United Technologies Photonics” (United Technologies, 1289 Blue Hills Avenue, Bloomfield, Conn. 06002).
  7. W. Wang, D. Chen, H. R. Fetterman, Appl. Phys. Lett. 65, 929 (1994).
    [Crossref]
  8. P. E. Pace, D. Styer, Opt. Eng. 33, 2638 (1994).
    [Crossref]

1994 (2)

W. Wang, D. Chen, H. R. Fetterman, Appl. Phys. Lett. 65, 929 (1994).
[Crossref]

P. E. Pace, D. Styer, Opt. Eng. 33, 2638 (1994).
[Crossref]

1989 (1)

R. G. Walker, I. Bennion, A. C. Carter, Electron. Lett. 25, 1443 (1989).
[Crossref]

1984 (1)

R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
[Crossref]

1982 (1)

G. D. H. King, R. Cebulski, Electron. Lett. 18, 1099 (1982).
[Crossref]

1979 (1)

H. F. Taylor, IEEE J. Quantum Electron. QE-15, 210 (1979).
[Crossref]

Becker, R. A.

R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
[Crossref]

Bennion, I.

R. G. Walker, I. Bennion, A. C. Carter, Electron. Lett. 25, 1443 (1989).
[Crossref]

Carter, A. C.

R. G. Walker, I. Bennion, A. C. Carter, Electron. Lett. 25, 1443 (1989).
[Crossref]

Cebulski, R.

G. D. H. King, R. Cebulski, Electron. Lett. 18, 1099 (1982).
[Crossref]

Chen, D.

W. Wang, D. Chen, H. R. Fetterman, Appl. Phys. Lett. 65, 929 (1994).
[Crossref]

Fetterman, H. R.

W. Wang, D. Chen, H. R. Fetterman, Appl. Phys. Lett. 65, 929 (1994).
[Crossref]

King, G. D. H.

G. D. H. King, R. Cebulski, Electron. Lett. 18, 1099 (1982).
[Crossref]

Leonberger, F. J.

R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
[Crossref]

Pace, P. E.

P. E. Pace, D. Styer, Opt. Eng. 33, 2638 (1994).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 18, p. 704.

Styer, D.

P. E. Pace, D. Styer, Opt. Eng. 33, 2638 (1994).
[Crossref]

Taylor, H. F.

H. F. Taylor, IEEE J. Quantum Electron. QE-15, 210 (1979).
[Crossref]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 18, p. 704.

Walker, R. G.

R. G. Walker, I. Bennion, A. C. Carter, Electron. Lett. 25, 1443 (1989).
[Crossref]

Wang, W.

W. Wang, D. Chen, H. R. Fetterman, Appl. Phys. Lett. 65, 929 (1994).
[Crossref]

Williamson, R. C.

R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
[Crossref]

Woodward, E. E.

R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
[Crossref]

Appl. Phys. Lett. (1)

W. Wang, D. Chen, H. R. Fetterman, Appl. Phys. Lett. 65, 929 (1994).
[Crossref]

Electron. Lett. (2)

G. D. H. King, R. Cebulski, Electron. Lett. 18, 1099 (1982).
[Crossref]

R. G. Walker, I. Bennion, A. C. Carter, Electron. Lett. 25, 1443 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

H. F. Taylor, IEEE J. Quantum Electron. QE-15, 210 (1979).
[Crossref]

Opt. Eng. (1)

P. E. Pace, D. Styer, Opt. Eng. 33, 2638 (1994).
[Crossref]

Proc. IEEE (1)

R. A. Becker, E. E. Woodward, F. J. Leonberger, R. C. Williamson, Proc. IEEE 72, 802 (1984).
[Crossref]

Other (2)

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 18, p. 704.

See“Specification for LiNbO3 modulators from United Technologies Photonics” (United Technologies, 1289 Blue Hills Avenue, Bloomfield, Conn. 06002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Direct conversion of an analog signal into gray code through an array of MZ interferometers with binary-scaled active lengths.

Fig. 2
Fig. 2

(a) Transfer characteristics of the MZ interferometer, (b) block diagram of the proposed ADC, (c) output showing the digital gray-code representation of the analog input.

Fig. 3
Fig. 3

Experimental data derived from two series-connected LiNbO3 MZ modulators.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I o ( V a ) = I i cos 2 ( π V a 2 V π ) ,
V π = ( 1 / 2 N ) V fs ,
I C = I i 2 [ 1 - cos ( π V a V π ) ]
I MSB - 2 = I A I C = I i 8 [ 1 - cos ( 2 π V a V π ) ] .
I LSB = I A I C I B I B = I i 128 [ 1 - cos ( 4 π V a V π ) ] .

Metrics