Abstract

A multilevel binary phase grating polarization device that uses a birefringent material as the substrate is proposed, and the design is described. Based on the effect of combining double refraction with diffraction, this type of device can act as a polarizing beam splitter and has a number of advantages for practical use.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Driscoll, Handbook of Optics (McGraw-Hill, New York, 1978), Chap. 10.
  2. M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, Appl. Opt. 32, 2526 (1993).
    [CrossRef] [PubMed]
  3. J. R. Leger, G. M. Morris, Appl. Opt. 32, 2481 (1993).
    [CrossRef] [PubMed]
  4. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982), pp. 21–40.
  5. F. S. Grawford, Waves, Berkeley Physics Course (McGraw-Hill, New York, 1968), Vol. 3, p. 420.

1993 (2)

Appl. Opt. (2)

Other (3)

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982), pp. 21–40.

F. S. Grawford, Waves, Berkeley Physics Course (McGraw-Hill, New York, 1968), Vol. 3, p. 420.

W. G. Driscoll, Handbook of Optics (McGraw-Hill, New York, 1978), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of an M-level binary phase grating polarizing beam splitter.

Fig. 2
Fig. 2

Diffraction intensity distributions (d = 2 μm).

Fig. 3
Fig. 3

Diffraction intensity distributions (d = 0.7 μm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ = n h + n d sin θ - n h cos θ ,
I = I i [ ( sin α ) / α ] 2 [ ( sin M β ) / ( sin β ) ] 2 × [ ( sin N γ ) / ( sin γ ) ] 2 , α = ( 1 / 2 ) δ s = ( π n d / λ ) sin θ , β = ( 1 / 2 ) δ i = ( π / λ ) ( n h + n d sin θ - n h cos θ ) , γ = ( 1 / 2 ) δ e = ( π n M d / λ ) sin θ ,
m λ = n h + n d sin θ m - n h cos θ m ,

Metrics