Abstract

A multilevel binary phase grating polarization device that uses a birefringent material as the substrate is proposed, and the design is described. Based on the effect of combining double refraction with diffraction, this type of device can act as a polarizing beam splitter and has a number of advantages for practical use.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Driscoll, Handbook of Optics (McGraw-Hill, New York, 1978), Chap. 10.
  2. M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, Appl. Opt. 32, 2526 (1993).
    [CrossRef] [PubMed]
  3. J. R. Leger, G. M. Morris, Appl. Opt. 32, 2481 (1993).
    [CrossRef] [PubMed]
  4. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982), pp. 21–40.
  5. F. S. Grawford, Waves, Berkeley Physics Course (McGraw-Hill, New York, 1968), Vol. 3, p. 420.

1993

Appl. Opt.

Other

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982), pp. 21–40.

F. S. Grawford, Waves, Berkeley Physics Course (McGraw-Hill, New York, 1968), Vol. 3, p. 420.

W. G. Driscoll, Handbook of Optics (McGraw-Hill, New York, 1978), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of an M-level binary phase grating polarizing beam splitter.

Fig. 2
Fig. 2

Diffraction intensity distributions (d = 2 μm).

Fig. 3
Fig. 3

Diffraction intensity distributions (d = 0.7 μm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ = n h + n d sin θ - n h cos θ ,
I = I i [ ( sin α ) / α ] 2 [ ( sin M β ) / ( sin β ) ] 2 × [ ( sin N γ ) / ( sin γ ) ] 2 , α = ( 1 / 2 ) δ s = ( π n d / λ ) sin θ , β = ( 1 / 2 ) δ i = ( π / λ ) ( n h + n d sin θ - n h cos θ ) , γ = ( 1 / 2 ) δ e = ( π n M d / λ ) sin θ ,
m λ = n h + n d sin θ m - n h cos θ m ,

Metrics