Abstract

Electronic speckle pattern interferometry in the transmission mode is shown to be an efficient tool for visualizing the thermal distribution in a transparent liquid. Examples of the Rayleigh Bénard convection pattern are determined. The position of the ground glass with respect to the liquid volume is discussed, and the capacity to combine streamlines and temperature field measurements within the same optical setup is established.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 5, pp. 255–295.
  2. J. N. Koster, Exp. Fluids 1, 121 (1983).
  3. R. Jones, C. Wykes, Holographic and Speckle Interferometry, Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989), pp. 165–196.
  4. B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
    [CrossRef]
  5. O. J. Løkberg, Appl. Opt. 33, 2574 (1994).
    [CrossRef] [PubMed]
  6. O. J. Løkberg, J. Acoust. Soc. Am. 96, 2244 (1994).
    [CrossRef]
  7. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961), Chap. 2, pp. 9–75.

1994 (2)

O. J. Løkberg, Appl. Opt. 33, 2574 (1994).
[CrossRef] [PubMed]

O. J. Løkberg, J. Acoust. Soc. Am. 96, 2244 (1994).
[CrossRef]

1988 (1)

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

1983 (1)

J. N. Koster, Exp. Fluids 1, 121 (1983).

Abendroph, H.

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961), Chap. 2, pp. 9–75.

Eggers, H.

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989), pp. 165–196.

Koster, J. N.

J. N. Koster, Exp. Fluids 1, 121 (1983).

Løkberg, O. J.

O. J. Løkberg, Appl. Opt. 33, 2574 (1994).
[CrossRef] [PubMed]

O. J. Løkberg, J. Acoust. Soc. Am. 96, 2244 (1994).
[CrossRef]

Lu, B.

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 5, pp. 255–295.

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989), pp. 165–196.

Yang, X.

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

Ziolkowski, E.

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

Appl. Opt. (1)

Exp. Fluids (1)

J. N. Koster, Exp. Fluids 1, 121 (1983).

J. Acoust. Soc. Am. (1)

O. J. Løkberg, J. Acoust. Soc. Am. 96, 2244 (1994).
[CrossRef]

Opt. Commun. (1)

B. Lu, X. Yang, H. Abendroph, H. Eggers, E. Ziolkowski, Opt. Commun. 69, 6 (1988).
[CrossRef]

Other (3)

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 5, pp. 255–295.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989), pp. 165–196.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961), Chap. 2, pp. 9–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup including ESPI thermal and concentration measurements with flow line visualization.

Fig. 2
Fig. 2

Rayleigh–Bénard convective motion presenting a periodicity along the x axis and the related temperature distribution integrated along the optical path. Ra = 3220, a = 4.84, silicone oil 200 mm2 s−1 (512 horizontal × 134 vertical pixels).

Fig. 3
Fig. 3

Ground glass positioning effect: when the ground glass is placed on the cell viewed side, the refractive-index variation is integrated along a line; when the ground glass is located on the cell illumination side, the refractive-index variation is integrated on a truncated cone.

Fig. 4
Fig. 4

Effect of the ground glass positioning: on the left part of the picture the ground glass is located behind the cell; on the right the element is placed in front of the cell. On the left, the ground glass (located behind the cell) allows us to follow the tracers moving in the liquid and to enhance the streamlines.

Metrics