Abstract

A passive signal-processing technique for addressing a miniature low-finesse fiber Fabry–Perot interferometric sensor with a multimode laser diode is reported. Two modes of a multimode laser diode separated by 3 nm are used to obtain quadrature outputs from an ~20-μm cavity. Wavelength-division demultiplexing combined with digital signal processing is used to recover the measurand-induced phase change. The technique is demonstrated for the measurement of vibration. The signal-to-noise ratio is ~70 dB at 500 Hz for ~π/2 rad displacement of the mirror, which results in a minimum detectable signal of ~200 μrad Hz−1/2. A quantitative discussion of miscalibration and systematic errors is presented.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Valis, D. Hogg, R. M. Measures, Smart Mater. Struct. 1, 227 (1992).
    [CrossRef]
  2. S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
    [CrossRef]
  3. D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
    [CrossRef]
  4. M. T. Veulluet, Ph. Graindorge, H. J. Arditty, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 78 (1987).
  5. J. L. Santos, D. A. Jackson, Opt. Lett. 16, 1210 (1991).
    [CrossRef] [PubMed]
  6. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef] [PubMed]
  7. M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
    [CrossRef]

1994

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

1992

T. Valis, D. Hogg, R. M. Measures, Smart Mater. Struct. 1, 227 (1992).
[CrossRef]

S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
[CrossRef]

1991

1987

M. T. Veulluet, Ph. Graindorge, H. J. Arditty, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 78 (1987).

1978

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

Aiki, K.

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

Arditty, H. J.

M. T. Veulluet, Ph. Graindorge, H. J. Arditty, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 78 (1987).

Barton, J. S.

S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
[CrossRef]

Chinone, N.

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

Claus, R. O.

Graindorge, Ph.

M. T. Veulluet, Ph. Graindorge, H. J. Arditty, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 78 (1987).

Grattan, K. T. V.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

Gunther, M. F.

Hogg, D.

T. Valis, D. Hogg, R. M. Measures, Smart Mater. Struct. 1, 227 (1992).
[CrossRef]

Ito, R.

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

Jackson, D. A.

Jones, J. D. C.

S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
[CrossRef]

Kidd, S. R.

S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
[CrossRef]

Measures, R. M.

T. Valis, D. Hogg, R. M. Measures, Smart Mater. Struct. 1, 227 (1992).
[CrossRef]

Murphy, K. A.

Nakamura, M.

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

Ning, Y. N.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

Palmer, A. W.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

Santos, J. L.

Singha, P. G.

S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
[CrossRef]

Umeda, J.

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

Valis, T.

T. Valis, D. Hogg, R. M. Measures, Smart Mater. Struct. 1, 227 (1992).
[CrossRef]

Vengsarkar, A. M.

Veulluet, M. T.

M. T. Veulluet, Ph. Graindorge, H. J. Arditty, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 78 (1987).

Wang, D. N.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

Weir, K.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

J. Appl. Phys.

M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, J. Appl. Phys. 49, 4644 (1978).
[CrossRef]

J. Lightwave Technol.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, J. Lightwave Technol. 12, 909 (1994).
[CrossRef]

Opt. Laser Eng.

S. R. Kidd, P. G. Singha, J. S. Barton, J. D. C. Jones, Opt. Laser Eng. 14, 207 (1992).
[CrossRef]

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

M. T. Veulluet, Ph. Graindorge, H. J. Arditty, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 78 (1987).

Smart Mater. Struct.

T. Valis, D. Hogg, R. M. Measures, Smart Mater. Struct. 1, 227 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical sensor response to displacements up to π. The linear (solid) trace is obtained for a well-calibrated sensor; the upper and lower traces are obtained when an error in the cavity length of ±1% (dotted curves) or ±5% (dashed curves) is introduced. PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Intensity (arbitrary units) versus wavelength (nm) spectra of the SLD151 AlGaInP laser diode for injection currents of (a) 91.53, (b) 91.90, and (c) > 92 mA and a 16.9 °C operating temperature.

Fig. 3
Fig. 3

Experimental arrangement.

Fig. 4
Fig. 4

Experimental results: (a) signal applied to the piezoelectric transducer; (b), (c) photodetector outputs for the two wavelengths, where the dashed line highlights the quadrature nature of the outputs; (d) D/A output showing computed phase change.

Fig. 5
Fig. 5

Experimental sensor response. Circles: when the sensor is well calibrated to within less than 0.05 μm (less than 0.25% error). Triangles: when the cavity is miscalibrated by ~0.1 μm (~0.05–1% error).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ j = 4 π n l λ j ,             j = 1 , 2 ,
Δ ϕ = 4 π n l ( Δ λ / λ 1 2 ) ,
i 1 = I 1 ( 1 + V 1 cos ϕ ) , i 2 = I 2 ( 1 + V 2 sin ϕ ) ,
ϕ = tan - 1 ( i 2 - I 2 i 1 - I 1 ) .
tan - 1 ( i 2 - I 2 i 1 - I 1 ) = tan - 1 [ tan ( ϕ ) cos ( ɛ + ɛ ϕ ) + sin ( ɛ + ɛ ϕ ) ] .

Metrics