Abstract

We investigate angle-multiplexed volume holographic memory with spherical reference beams, for which the spherical approximation is made to model the wave-front distortion in general. We find that the angular selectivity and the cross-talk noise with spherical reference beams are close to those with planar reference beams. The results indicate that angle-multiplexed volume holographic memory can be realized in compact systems for which large wave-front distortion is expected.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. V. Heerden, Appl. Opt. 2, 393 (1963).
    [Crossref]
  2. G. W. Burr, F. H. Mok, D. Psaltis, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7.
  3. C. Gu, J. Hong, I. McMichael, R. Saxena, F. H. Mok, J. Opt. Soc. Am. A 9, 1978 (1992).
    [Crossref]
  4. A. Yariv, Opt. Lett. 18, 652 (1993).
    [Crossref] [PubMed]
  5. F. T. S. Yu, F. Zhao, H. Zhou, S. Yin, Opt. Lett. 18, 1849 (1993).
    [Crossref] [PubMed]
  6. X. Yi, P. Yeh, C. Gu, Opt. Lett. 19, 1580 (1994).
    [Crossref] [PubMed]
  7. X. Yi, S. Campbell, P. Yeh, C. Gu, Opt. Lett. 20, 779 (1995).
    [Crossref] [PubMed]
  8. J. W. Goodman, Introduction to Fourier Optics (McGraw- Hill, New York, 1968), pp. 91–93.
  9. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 371–374.

1995 (1)

1994 (1)

1993 (2)

1992 (1)

1963 (1)

Burr, G. W.

G. W. Burr, F. H. Mok, D. Psaltis, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7.

Campbell, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw- Hill, New York, 1968), pp. 91–93.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 371–374.

Gu, C.

Heerden, P. J. V.

Hong, J.

McMichael, I.

Mok, F. H.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. H. Mok, J. Opt. Soc. Am. A 9, 1978 (1992).
[Crossref]

G. W. Burr, F. H. Mok, D. Psaltis, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7.

Psaltis, D.

G. W. Burr, F. H. Mok, D. Psaltis, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7.

Saxena, R.

Yariv, A.

Yeh, P.

Yi, X.

Yin, S.

Yu, F. T. S.

Zhao, F.

Zhou, H.

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (4)

Other (3)

J. W. Goodman, Introduction to Fourier Optics (McGraw- Hill, New York, 1968), pp. 91–93.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 371–374.

G. W. Burr, F. H. Mok, D. Psaltis, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Recording and readout geometry for angle-multiplexed volume holographic memory with a spherical reference beam.

Fig. 2
Fig. 2

Storage density as a function of the desired bit-error rate for various values of the radii of the spherical reference beams, where θ = π/2, λ = 0.5 μm, and α = 0.2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ɛ m = - M M R m * S m + c . c . ,
R m ( r ) = 1 i λ z 0 exp [ i 2 π λ ( - y sin θ m + z cos θ m ) ] × exp { i π λ z 0 [ x 2 + ( y cos θ m + z sin θ m ) 2 ] } ,
S m ( r ) exp ( i 2 π λ z ) d x 0 d y 0 f m ( x 0 , y 0 ) × exp [ - i 2 π λ f ( x x 0 + y y 0 ) ] × exp [ - i π λ f z f ( x 0 2 + y 0 2 ) ] ,
E ( r ) d z m = - M M d z P ( r ) S m ( r ) × exp { i 2 π λ [ - y ( sin θ j - sin θ m ) ] + z ( cos θ j - cos θ m ) ] } × exp { i π λ z 0 [ 1 2 ( y 2 - z 2 ) ( cos 2 θ j - cos 2 θ m ) + y z ( sin 2 θ j - sin 2 θ m ) ] } ,
noise = m j 2 t 2 - t t d p exp { i 2 π λ p [ ( cos θ j - cos θ m ) - y 2 f ( sin θ j - sin θ m ) ] } × sin { 1 2 ( t - p ) π λ z 0 p [ ( - 1 + y 2 2 f 2 ) ( cos 2 θ j - cos 2 θ m ) + 2 y 2 f ( sin 2 θ j - sin 2 θ m ) ] } π λ z 0 p [ ( - 1 + y 2 2 f 2 ) ( cos 2 θ j - cos 2 θ m ) + 2 y 2 f ( sin 2 θ j - sin 2 θ m ) ] × Λ { f 2 δ y z 0 p [ y 2 f ( cos 2 θ j - cos 2 θ m ) + ( sin 2 θ j - sin 2 θ m ) ] } ,
p = α [ NSR - n ( z 0 ) ] ( 1 / λ 3 ) ,

Metrics