Abstract

Spatial light modulators are optimized to operate with light of one polarization entering the device at normal incidence. Most optical processors, however, require light to enter at other angles, some far from normal incidence and with varying (angle-dependent) polarization. We discuss the implications of the limited field of view of spatial light modulators for optical processing and propose a solution to this problem.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, Multidimensional Syst. Signal Process. 2, 373 (1992).
    [CrossRef]
  2. J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
    [CrossRef]
  3. D. Gabor, Proc. Inst. Electr. Eng. 93, 429 (1946)D. Gabor, Prog. Opt. 1, 109 (1961).

1992

H. J. Caulfield, Multidimensional Syst. Signal Process. 2, 373 (1992).
[CrossRef]

1990

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

1946

D. Gabor, Proc. Inst. Electr. Eng. 93, 429 (1946)D. Gabor, Prog. Opt. 1, 109 (1961).

Athale, R. A.

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, Multidimensional Syst. Signal Process. 2, 373 (1992).
[CrossRef]

Gabor, D.

D. Gabor, Proc. Inst. Electr. Eng. 93, 429 (1946)D. Gabor, Prog. Opt. 1, 109 (1961).

Lee, S. H.

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Neff, J. A.

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Multidimensional Syst. Signal Process.

H. J. Caulfield, Multidimensional Syst. Signal Process. 2, 373 (1992).
[CrossRef]

Proc. IEEE

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Proc. Inst. Electr. Eng.

D. Gabor, Proc. Inst. Electr. Eng. 93, 429 (1946)D. Gabor, Prog. Opt. 1, 109 (1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Conventional 4f spatial filtering system.

Fig. 2
Fig. 2

Geometry that determines the logon number.

Fig. 3
Fig. 3

Pixel size (length of the edge of a square pixel) versus N for various fields of view (FOV; in units of degrees).

Fig. 4
Fig. 4

SLM size (length of side) versus N for various FOV’s (in degrees).

Fig. 5
Fig. 5

Fourier-transform system using magnification. It does not use the available field of view of the SLM but effectively uses the area of each pixel.

Fig. 6
Fig. 6

Modified optical correlator system.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

L = A Ω / λ 2 .
Ω = 2 π ( 1 - cos 5 ° ) = π ( 5 ° ) 2 = 0.024 sr .
L F ,
A p Ω p A I Ω I
A I Ω I = A I Ω I ,
A I A p ,
Ω I Ω e .
T = A Ω
L = T / λ 2 .
F = L = A Ω e / λ 2 .
A i = F λ 2 / Ω e .
s = ( F λ 2 / Ω e ) 1 / 2 .
S = F 1 / 2 s = λ F / Ω e .
s δ s .
s / δ s .
Ω e > Ω I .
Ω e = Ω I .
A p = A I ,

Metrics