Abstract

A group-velocity mismatch compensation technique has been applied to cw Nd:YAG and Nd:YLF lasers mode locked by use of the nonlinear reflectivity or the nonlinear phase shift that arises from the intracavity parametric interaction of a pulse with its second harmonic. An intracavity birefringent plate, which delays the fundamental wavelength pulse with respect to the second-harmonic pulse, compensates for the opposite effect that arises in the second-harmonic crystal. Compensation reduces the pulse duration by a factor of 2 and allows pulses of 5.1 and 5.9 ps to be obtained from Nd:YLF and Nd:YAG lasers, respectively.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Stankov, Appl. Phys. B 45, 191 (1988).
    [CrossRef]
  2. K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
    [CrossRef]
  3. M. B. Danailov, G. Cerullo, V. Magni, D. Segala, S. De Silvestri, Opt. Lett. 19, 792 (1994).
    [CrossRef] [PubMed]
  4. G. Cerullo, M. B. Danailov, S. De Silvestri, P. Laporta, V. Magni, D. Segala, S. Taccheo, Appl. Phys. Lett. 65, 2392 (1994).
    [CrossRef]
  5. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, V. Magni, Opt. Lett. 20, 746 (1995).
    [CrossRef] [PubMed]
  6. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  7. K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Opt. Lett. 16, 1119 (1991).
    [CrossRef] [PubMed]
  8. I. Buchvarov, G. Christov, S. Saltiel, Opt. Commun. 107, 281 (1994).
    [CrossRef]
  9. K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Appl. Phys. B 54, 303 (1992).
    [CrossRef]
  10. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
    [CrossRef]
  11. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
    [CrossRef]
  12. K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
    [CrossRef]

1995 (1)

1994 (3)

M. B. Danailov, G. Cerullo, V. Magni, D. Segala, S. De Silvestri, Opt. Lett. 19, 792 (1994).
[CrossRef] [PubMed]

G. Cerullo, M. B. Danailov, S. De Silvestri, P. Laporta, V. Magni, D. Segala, S. Taccheo, Appl. Phys. Lett. 65, 2392 (1994).
[CrossRef]

I. Buchvarov, G. Christov, S. Saltiel, Opt. Commun. 107, 281 (1994).
[CrossRef]

1992 (2)

1991 (2)

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Opt. Lett. 16, 1119 (1991).
[CrossRef] [PubMed]

P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

1988 (2)

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

1986 (1)

K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
[CrossRef]

1968 (1)

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Akhmanov, A.

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Buchvarov, I.

I. Buchvarov, G. Christov, S. Saltiel, Opt. Commun. 107, 281 (1994).
[CrossRef]

Cerullo, G.

Chirkin, A. S.

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Christov, G.

I. Buchvarov, G. Christov, S. Saltiel, Opt. Commun. 107, 281 (1994).
[CrossRef]

Danailov, M. B.

G. Cerullo, M. B. Danailov, S. De Silvestri, P. Laporta, V. Magni, D. Segala, S. Taccheo, Appl. Phys. Lett. 65, 2392 (1994).
[CrossRef]

M. B. Danailov, G. Cerullo, V. Magni, D. Segala, S. De Silvestri, Opt. Lett. 19, 792 (1994).
[CrossRef] [PubMed]

Davis, L.

P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

De Silvestri, S.

DeSalvo, R.

Drabovich, K. N.

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Hagan, D. J.

Huang, C.

P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Jethwa, J.

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

Kato, K.

K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
[CrossRef]

Khokhlov, R. V.

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Kovrigin, A. I.

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Laporta, P.

G. Cerullo, M. B. Danailov, S. De Silvestri, P. Laporta, V. Magni, D. Segala, S. Taccheo, Appl. Phys. Lett. 65, 2392 (1994).
[CrossRef]

Magni, V.

Mirkov, M. G.

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Appl. Phys. B 54, 303 (1992).
[CrossRef]

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Opt. Lett. 16, 1119 (1991).
[CrossRef] [PubMed]

Monguzzi, A.

Saltiel, S.

I. Buchvarov, G. Christov, S. Saltiel, Opt. Commun. 107, 281 (1994).
[CrossRef]

Segala, D.

Sheik-Bahae, M.

Stankov, K. A.

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Appl. Phys. B 54, 303 (1992).
[CrossRef]

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Opt. Lett. 16, 1119 (1991).
[CrossRef] [PubMed]

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

Stegeman, G.

Sukhorukov, A. P.

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Taccheo, S.

G. Cerullo, M. B. Danailov, S. De Silvestri, P. Laporta, V. Magni, D. Segala, S. Taccheo, Appl. Phys. Lett. 65, 2392 (1994).
[CrossRef]

Tzolov, V. P.

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Appl. Phys. B 54, 303 (1992).
[CrossRef]

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Opt. Lett. 16, 1119 (1991).
[CrossRef] [PubMed]

Van Stryland, E. W.

Velsko, P.

P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Webb, M.

P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Appl. Phys. B (2)

K. A. Stankov, V. P. Tzolov, M. G. Mirkov, Appl. Phys. B 54, 303 (1992).
[CrossRef]

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

G. Cerullo, M. B. Danailov, S. De Silvestri, P. Laporta, V. Magni, D. Segala, S. Taccheo, Appl. Phys. Lett. 65, 2392 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
[CrossRef]

Opt. Commun. (2)

I. Buchvarov, G. Christov, S. Saltiel, Opt. Commun. 107, 281 (1994).
[CrossRef]

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Lamp-pumped Nd:YLF laser and (b) longitudinally pumped Nd:YAG laser, mode locked by the nonlinear mirror technique. (c) Longitudinally pumped Nd:YAG laser mode locked by the CSM technique. PP’s, glass plates; CP’s, birefringent compensating plates; S, slit cutting the mode in the sagittal plane; BS, output coupling beam splitter.

Fig. 2
Fig. 2

Autocorrelation FWHM of the pulses obtained from the Nd:YLF laser by the nonlinear mirror technique as a function of the compensation parameter c.

Fig. 3
Fig. 3

Background-free autocorrelations (solid curves) and best fits with sech2 pulses (circles) of the pulses from (a) a Nd:YLF laser with nonlinear mirror ML and c = 0.6; (b) a Nd:YLF laser with nonlinear mirror ML and c = −0.6; (c) a Nd:YAG laser with nonlinear mirror ML and c = 0.6; (d) a Nd:YAG laser with CSM and c = 0.6. The pulse width is the autocorrelation FWHM divided by 1.55.

Metrics