Abstract

A high-power diode-pumped Cr-doped LiSrAlF6 (Cr:LiSAF) laser with an output power of 400 mW cw is experimentally demonstrated. The power-scalable concept involving at least one cylindrical cavity mirror is discussed with respect to mode-matching requirements and thermal limitations. Simple arguments indicate that our approach allows one to scale the output power of a Cr:LiSAF laser to the multiwatt level. This is further supported by a comparison with other high-power concepts for diode-pumped solid-state lasers.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. W. Hyde, N. P. Barry, R. Mellish, P. M. W. French, J. R. Taylor, C. J. van de Poel, A. Valster, Opt. Lett. 20, 160 (1995).
    [CrossRef] [PubMed]
  2. D. Kopf, K. J. Weingarten, L. Brovelli, M. Kamp, U. Keller, Opt. Lett. 19, 2143 (1994).
    [CrossRef] [PubMed]
  3. D. C. Shannon, R. W. Wallace, Opt. Lett. 16, 318 (1991).
    [CrossRef] [PubMed]
  4. V. N. Bykov, A. A. Mitin, N. V. Shkunov, Sov. J. Quantum Electron. 14, 483 (1984).
    [CrossRef]
  5. F. Krausz, J. Zehetner, T. Brabec, E. Wintner, Opt. Lett. 16, 1496 (1991)J. Zehetner, Ch. Spielmann, F. Krausz, E. Wintner, in Advanced Solid State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 215.
    [CrossRef] [PubMed]
  6. Y. N. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
    [CrossRef]
  7. M. W. Sasnet, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), p. 132.
  8. For Mx(y)2≫1 this holds only within a factor of 2, provided that the pump beam is within the cavity mode over the confocal parameter bx(y).
  9. H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
    [CrossRef]
  10. J. G. Korvink, J. Funk, H. Baltes, Sensors Mater. 6, 235 (1994).
  11. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1988).
  12. M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.
  13. W. A. Clarkson, A. B. Neilson, D. C. Hanna, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThL2.
  14. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
    [CrossRef]
  15. M. Stalder, M. Bass, B. H. T. Chai, J. Opt. Soc. Am. B 9, 2271 (1992).
    [CrossRef]

1995 (1)

1994 (3)

D. Kopf, K. J. Weingarten, L. Brovelli, M. Kamp, U. Keller, Opt. Lett. 19, 2143 (1994).
[CrossRef] [PubMed]

J. G. Korvink, J. Funk, H. Baltes, Sensors Mater. 6, 235 (1994).

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

1993 (2)

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

1992 (1)

1991 (2)

1990 (1)

Y. N. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

1984 (1)

V. N. Bykov, A. A. Mitin, N. V. Shkunov, Sov. J. Quantum Electron. 14, 483 (1984).
[CrossRef]

Baltes, H.

J. G. Korvink, J. Funk, H. Baltes, Sensors Mater. 6, 235 (1994).

Barry, N. P.

Bass, M.

Beach, R.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Bona, G. L.

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

Brabec, T.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Brovelli, L.

Bykov, V. N.

V. N. Bykov, A. A. Mitin, N. V. Shkunov, Sov. J. Quantum Electron. 14, 483 (1984).
[CrossRef]

Chai, B. H. T.

Clarkson, W. A.

W. A. Clarkson, A. B. Neilson, D. C. Hanna, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThL2.

Ditmire, T.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Fan, Y. N.

Y. N. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

French, P. M. W.

Funk, J.

J. G. Korvink, J. Funk, H. Baltes, Sensors Mater. 6, 235 (1994).

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Hanna, D. C.

W. A. Clarkson, A. B. Neilson, D. C. Hanna, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThL2.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Hyde, S. C. W.

Ignatuk, W.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Jaeckel, H.

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

Kamp, M.

Keller, U.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1988).

Kopf, D.

Korvink, J. G.

J. G. Korvink, J. Funk, H. Baltes, Sensors Mater. 6, 235 (1994).

Krausz, F.

Mellish, R.

Mitin, A. A.

V. N. Bykov, A. A. Mitin, N. V. Shkunov, Sov. J. Quantum Electron. 14, 483 (1984).
[CrossRef]

Neilson, A. B.

W. A. Clarkson, A. B. Neilson, D. C. Hanna, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThL2.

Olson, R.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Payne, S. A.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Perry, M. D.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Quarles, G. J.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Richard, H.

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

Roentgen, P.

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

Sanchez, A.

Y. N. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

Sasnet, M. W.

M. W. Sasnet, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), p. 132.

Shannon, D. C.

Shkunov, N. V.

V. N. Bykov, A. A. Mitin, N. V. Shkunov, Sov. J. Quantum Electron. 14, 483 (1984).
[CrossRef]

Stalder, M.

Taylor, J. R.

Unger, P.

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

Valster, A.

van de Poel, C. J.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Wallace, R. W.

Weingarten, K. J.

Weston, J.

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Wintner, E.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Zehetner, J.

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 363 (1994).
[CrossRef]

Electron. Lett. (1)

H. Jaeckel, G. L. Bona, H. Richard, P. Roentgen, P. Unger, Electron. Lett. 29, 101 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. N. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

M. D. Perry, S. A. Payne, T. Ditmire, R. Beach, G. J. Quarles, W. Ignatuk, R. Olson, J. Weston, Laser Focus World (September1993), p. 85.

Opt. Lett. (4)

Sensors Mater. (1)

J. G. Korvink, J. Funk, H. Baltes, Sensors Mater. 6, 235 (1994).

Sov. J. Quantum Electron. (1)

V. N. Bykov, A. A. Mitin, N. V. Shkunov, Sov. J. Quantum Electron. 14, 483 (1984).
[CrossRef]

Other (4)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1988).

M. W. Sasnet, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), p. 132.

For Mx(y)2≫1 this holds only within a factor of 2, provided that the pump beam is within the cavity mode over the confocal parameter bx(y).

W. A. Clarkson, A. B. Neilson, D. C. Hanna, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThL2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup using a flat/Brewster-cut Cr:LiSAF crystal, a cylindrical cavity mirror, a spherical mirror, and a flat output coupler. x denotes the tangential plane, y the sagittal direction. HR, highly reflecting; HT, highly transmitting; SAC 900, single-axis-collimator cylindrical microlens (Blue Sky Research).

Fig. 2
Fig. 2

Measured output power versus absorbed pump power with a 1% output coupler and a Cr:LiSAF heat-sink temperature of 10 °C. The laser threshold is at 160-mW absorbed pump power, the slope efficiency is approximately 30%, and the overall electrical-to-optical efficiency is 0.4 W/15 W = 2.7%. We could tune the laser wavelength over a range of 80 nm FWHM by using a two-plate birefringent tuning element (inset).

Fig. 3
Fig. 3

Diagrams of the pump and mode areas inside the gain medium; the heat-sink contacts are on the top and at the bottom. (a) Present situation, (b) scaling of the pump beam tangentially, maintaining the same pump intensity. Heat flux is only in the vertical (sagittal) direction, which can be treated in a one-dimensional model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

b x = b y = L ,
ω 0 , x 2 M y 2 = ω 0 , y 2 M x 2 = L λ n 2 π M x 2 M y 2 .
A x y = π ω 0 x ω 0 y = π ω 0 x 2 M y 2 / M x 2 = L λ n 2 π M x 2 M y 2 .

Metrics