Abstract

We present a new nondestructive method for measuring the propagation loss coefficient in waveguides based on optimum end-fire coupling by self-pumped phase conjugation in a photorefractive BaTiO3 crystal. In a first pass through the waveguide, the laser beam is adapted to the waveguide mode profile, and hence the phase-conjugated beam is automatically coupled back into the guide with the optimum coupling efficiency. The propagation loss coefficient is determined by measurement of the transmittance of the phase-conjugated beam in the second pass through the wave-guide. We apply this method to measure the propagation loss coefficient of ion-implanted KNbO3 channel waveguides with an accuracy of better than 5%.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g.,R. G. Hunsperger, Integrated Optics: Theory and Technology, 3rd ed. (Springer-Verlag, New York, 1991), pp. 84–87.
  2. H. P. Weber, F. A. Dunn, W. N. Leibolt, Appl. Opt. 12, 755 (1973).
    [CrossRef] [PubMed]
  3. S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
    [CrossRef]
  4. J. L. Jackel, J. J. Veselka, Appl. Opt. 23, 197 (1983).
    [CrossRef]
  5. K. H. Haegele, R. Ulrich, Opt. Lett. 4, 60 (1979).
    [CrossRef] [PubMed]
  6. R. Regener, W. Sohler, Appl. Phys. B 36, 143 (1985).
    [CrossRef]
  7. M. Haruna, Y. Segawa, H. Nishihara, Electron. Lett. 28, 1612 (1992).
    [CrossRef]
  8. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  9. D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
    [CrossRef]
  10. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
    [CrossRef]

1993 (1)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

1992 (2)

M. Haruna, Y. Segawa, H. Nishihara, Electron. Lett. 28, 1612 (1992).
[CrossRef]

D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[CrossRef]

1985 (1)

R. Regener, W. Sohler, Appl. Phys. B 36, 143 (1985).
[CrossRef]

1983 (1)

1982 (1)

1979 (2)

K. H. Haegele, R. Ulrich, Opt. Lett. 4, 60 (1979).
[CrossRef] [PubMed]

S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
[CrossRef]

1973 (1)

Allen, S. D.

S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
[CrossRef]

Bass, M.

S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
[CrossRef]

Buchal, C.

D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[CrossRef]

Dunn, F. A.

Eason, R. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Feinberg, J.

Fleuster, M.

D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[CrossRef]

Fluck, D.

D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[CrossRef]

Garmire, E.

S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
[CrossRef]

Garrett, M. H.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Günter, P.

D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[CrossRef]

Haegele, K. H.

Haruna, M.

M. Haruna, Y. Segawa, H. Nishihara, Electron. Lett. 28, 1612 (1992).
[CrossRef]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Hunsperger, R. G.

See, e.g.,R. G. Hunsperger, Integrated Optics: Theory and Technology, 3rd ed. (Springer-Verlag, New York, 1991), pp. 84–87.

Jackel, J. L.

Leibolt, W. N.

Nishihara, H.

M. Haruna, Y. Segawa, H. Nishihara, Electron. Lett. 28, 1612 (1992).
[CrossRef]

Packer, B.

S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
[CrossRef]

Regener, R.

R. Regener, W. Sohler, Appl. Phys. B 36, 143 (1985).
[CrossRef]

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Rytz, D.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Segawa, Y.

M. Haruna, Y. Segawa, H. Nishihara, Electron. Lett. 28, 1612 (1992).
[CrossRef]

Sohler, W.

R. Regener, W. Sohler, Appl. Phys. B 36, 143 (1985).
[CrossRef]

Ulrich, R.

Veselka, J. J.

Weber, H. P.

Appl. Opt. (2)

Appl. Phys. B (1)

R. Regener, W. Sohler, Appl. Phys. B 36, 143 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

S. D. Allen, E. Garmire, M. Bass, B. Packer, Appl. Phys. Lett. 34, 435 (1979).
[CrossRef]

Electron. Lett. (1)

M. Haruna, Y. Segawa, H. Nishihara, Electron. Lett. 28, 1612 (1992).
[CrossRef]

J. Appl. Phys. (1)

D. Fluck, M. Fleuster, C. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[CrossRef]

Opt. Commun. (1)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Opt. Lett. (2)

Other (1)

See, e.g.,R. G. Hunsperger, Integrated Optics: Theory and Technology, 3rd ed. (Springer-Verlag, New York, 1991), pp. 84–87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup for waveguide loss measurements using self-pumped phase conjugation from a BaTiO3 crystal (SPPC) for optimum end-fire coupling into the waveguide (WG). M, mirror; BS, beam splitters; solid arrows, incident forward-traveling beam; dashed arrows, phase-conjugated backward-traveling beam.

Fig. 2
Fig. 2

Intensity profiles of (a) the outcoupled waveguide mode, (b) its phase-conjugate replica, and (c) their difference.

Fig. 3
Fig. 3

Power ratio PD1/PD2 as a function of temperature measured on an ion-implanted KNbO3 channel waveguide of 7.4-mm length at a wavelength of 514.5 nm. The oscillations are due to Fabry-Perot resonances.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = 1 L ln ( K P D 1 P D 2 ) ,
K = R BS 2 T BS 1 R BS 1 T MO 1 T MO 2 T FR 2 ,
T max = T FR 2 exp ( - α L ) [ 1 - R FR exp ( - α L ) ] 2 ,
α = 1 L ln ( 2 R FR 2 2 R FR + ( P D 1 P D 2 ) min K - { 4 R FR ( P D 1 P D 2 ) min K + [ ( P D 1 P D 2 ) min K ] 2 } 1 / 2 )

Metrics