Abstract

We analyze a fiber Bragg grating by focusing the beam of a probe laser (λ = 633 nm) through the side of the fiber onto its core. Designed for Bragg retroreflection at some longer wavelength (λB = 1290 nm), the grating causes Bragg reflection of the probe beam if the input angle is chosen suitably. The reflected power is proportional to the square of the amplitude of the refractive-index modulation at the probed position. By scanning the probe beam along the fiber we measure the axial profile of the modulation amplitude with a spatial resolution of 10 μm. The measured profile is consistent with a single-photon UV writing process.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Morey, G. Meltz, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  2. B. J. Eggleton, P. A. Krug, L. Poladian, K. A. Ahmed, H.-F. Liu, Opt. Lett. 19, 877 (1994).
    [CrossRef] [PubMed]
  3. J. E. Roman, K. A. Winick, IEEE J. Quantum Electron. 29, 975 (1993).
    [CrossRef]
  4. E. Brinkmeyer, Opt. Lett. 20, 810 (1995).
    [CrossRef] [PubMed]
  5. R. Ulrich, “Analysis of fiber gratings by external Bragg reflection,” submitted toJ. Lightwave Technol.
  6. R. J. Campbell, R. Kashyap, Int. J. Optoelectron. 9, 33 (1994).
  7. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

1995 (1)

1994 (2)

1993 (1)

J. E. Roman, K. A. Winick, IEEE J. Quantum Electron. 29, 975 (1993).
[CrossRef]

1989 (1)

Ahmed, K. A.

Brinkmeyer, E.

Campbell, R. J.

R. J. Campbell, R. Kashyap, Int. J. Optoelectron. 9, 33 (1994).

Eggleton, B. J.

Glenn, W. H.

Inniss, D.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

Kashyap, R.

R. J. Campbell, R. Kashyap, Int. J. Optoelectron. 9, 33 (1994).

Kosinski, S.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

Krug, P. A.

Lemaire, P. J.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

Liu, H.-F.

Meltz, G.

Morey, W. W.

Poladian, L.

Reed, W. A.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

Roman, J. E.

J. E. Roman, K. A. Winick, IEEE J. Quantum Electron. 29, 975 (1993).
[CrossRef]

Ulrich, R.

R. Ulrich, “Analysis of fiber gratings by external Bragg reflection,” submitted toJ. Lightwave Technol.

Vengsarkar, A. M.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

Winick, K. A.

J. E. Roman, K. A. Winick, IEEE J. Quantum Electron. 29, 975 (1993).
[CrossRef]

Zhong, Q.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

IEEE J. Quantum Electron. (1)

J. E. Roman, K. A. Winick, IEEE J. Quantum Electron. 29, 975 (1993).
[CrossRef]

Int. J. Optoelectron. (1)

R. J. Campbell, R. Kashyap, Int. J. Optoelectron. 9, 33 (1994).

Opt. Lett. (3)

Other (2)

R. Ulrich, “Analysis of fiber gratings by external Bragg reflection,” submitted toJ. Lightwave Technol.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. Kosinski, in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic arrangement for the characterization of a fiber grating by external Bragg reflection.

Fig. 2
Fig. 2

Scattering efficiency η(z) ≡ Pr(z)/Pi of the fiber grating as a function of position z along the grating. The filled circles represent measured points, and the curve is a fitted Gaussian of half-width wp = 1.73 mm.

Fig. 3
Fig. 3

Transmission spectra of the fiber Bragg grating. The solid curve is measured with a white-light source and an optical spectrum analyzer, and the dashed curve is calculated by coupled-mode analysis and a truncated Gaussian modulation profile, with maximum index modulation Δnmax = 9.16 × 10−4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ r = sin θ i = n c sin θ c = n 0 sin θ 0 = λ / 2 g = N B λ / λ B .
n ( z ) = n 0 + Δ n sin K z .
σ i 1.66 k 2 a 3 w i Δ n 2 sin 2 γ 0 / cos 2 θ 0 ,

Metrics