Abstract

Intense optical pulse propagation in a GeO2-doped silica glass fiber grating results in nonlinear pulse propagation velocities and increased transmission at wavelengths where the grating reflects light in the linear limit. These nonlinear pulse propagation effects are predicted by numerical simulations of gap soliton propagation. The large linear refractive-index variations used for the fiber gratings in these experiments permit the propagation of gap solitons in short lengths of fiber.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Martijn de Sterke, J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1995), Vol. 33.
  2. W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
    [CrossRef] [PubMed]
  3. C. Martijn de Sterke, J. E. Sipe, Opt. Soc. Am. B 6, 1722 (1989).
    [CrossRef]
  4. C. Martijn de Sterke, J. E. Sipe, Opt. Lett. 14, 871 (1989).
    [CrossRef]
  5. G. Meltz, W. W. Morer, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  6. V. Mizrahi, J. E. Sipe, J. Lightwave Technol. 11, 1513 (1993).
    [CrossRef]
  7. N. D. Sankey, D. F. Prelewitz, T. G. Brown, Appl. Phys. Lett. 60, 1427 (1992).
    [CrossRef]
  8. V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
    [CrossRef]

1993 (2)

V. Mizrahi, J. E. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

1992 (1)

N. D. Sankey, D. F. Prelewitz, T. G. Brown, Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

1989 (3)

1987 (1)

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

Atkins, R. M.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

Brown, T. G.

N. D. Sankey, D. F. Prelewitz, T. G. Brown, Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

Chen, W.

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

DiGiovanni, D. J.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

Erdogan, T.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

Glenn, W. H.

Lemaire, P. J.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

Martijn de Sterke, C.

C. Martijn de Sterke, J. E. Sipe, Opt. Soc. Am. B 6, 1722 (1989).
[CrossRef]

C. Martijn de Sterke, J. E. Sipe, Opt. Lett. 14, 871 (1989).
[CrossRef]

C. Martijn de Sterke, J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1995), Vol. 33.

Meltz, G.

Mills, D. L.

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

Mizrahi, V.

V. Mizrahi, J. E. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

Morer, W. W.

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, T. G. Brown, Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

Reed, W. A.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, T. G. Brown, Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

Sipe, J. E.

V. Mizrahi, J. E. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

C. Martijn de Sterke, J. E. Sipe, Opt. Lett. 14, 871 (1989).
[CrossRef]

C. Martijn de Sterke, J. E. Sipe, Opt. Soc. Am. B 6, 1722 (1989).
[CrossRef]

C. Martijn de Sterke, J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1995), Vol. 33.

Appl. Phys. Lett. (2)

N. D. Sankey, D. F. Prelewitz, T. G. Brown, Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, R. M. Atkins, Appl. Phys. Lett. 63, 1727 (1993).
[CrossRef]

J. Lightwave Technol. (1)

V. Mizrahi, J. E. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

Opt. Lett. (2)

Opt. Soc. Am. B (1)

C. Martijn de Sterke, J. E. Sipe, Opt. Soc. Am. B 6, 1722 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

Other (1)

C. Martijn de Sterke, J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1995), Vol. 33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated fiber grating transmission spectrum as a function of wavelength for parameters used in the gap soliton experiments. A photonic gap spectrum of the fiber grating used in the experiments is shown in the inset. This experimental spectrum is measured with low spectral resolution so that the sharp microresonances calculated for the short-wavelength edge of the photonic gap are not resolved. This spectrum is measured with zero strain on the fiber. The grating spectrum is strain tuned in the experiment so the gap edge is near the pulse spectrum. The grating length is 0.8 cm FWHM and has an index amplitude modulation ΔnL/nL = 0.002. The dotted curve is the Fourier transform of the incident pulse with a center wavelength of 1053.0 nm.

Fig. 2
Fig. 2

Schematic diagram of the experimental apparatus used for gap soliton propagation. A microscope objective focuses the pulse into the fiber, and a second objective collects light at the output. The total length of the fiber is 4.3 cm. The grating begins approximately 1.5 cm from the front end of the fiber. An aperture spatially filters the light out of the fiber to minimize light leaked through the cladding.

Fig. 3
Fig. 3

Transmitted energy as a function of incident intensity in the range where pulse reshaping is observed and gap solitons are predicted by simulations. The incident pulse wavelength is tuned outside the gap (squares) and at 50% transmission (circles). For tuning where the grating transmission is less than 20%, leaked cladding light (diamonds) dominates the transmitted light. The solid lines are linear extrapolations of the initial slopes of the data.

Fig. 4
Fig. 4

(a) Experimental and (b) simulated pulse shapes for a series of incident intensities. The incident intensities in (a) are 12.5 (dashed–dotted curve), 25 (dashed curve), 50 (solid curve), and 100 (dotted curve) GW/cm2. The intensities in (b) are 1 (dashed–dotted curve), 25 (dashed curve), 50 (solid curve), and 100 (dotted curve) GW/cm2. The transmitted intensities shown are normalized by the incident intensities. The experimental intensities are known only to within 20% because of uncertainties in measurement geometries and grating profiles. Note that the time scales in (a) and (b) differ by a factor of 2 because of the experimental time-resolution function of 90 ps.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N 2 Δ n L Δ n NL > 1 ,

Metrics