Abstract

Factors influencing the optical bandwidth of a free-running pulsed β-barium borate optical parametric oscillator are examined and incorporated in a simple fitting procedure. Spatiospectral phenomena in the optical parametric oscillator output beam are thereby identified; these suggest a novel way to reduce the effective optical bandwidth for spectroscopic purposes. This technique is demonstrated by recording a degenerate four-wave mixing spectrum of sodium atoms in an air–acetylene flame.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
    [CrossRef]
  2. J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1765 (1993).
    [CrossRef]
  3. W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 56, 1819 (1990).
    [CrossRef]
  4. A. Fix, T. Schröder, R. Wallenstein, Laser Optoelectron. 23(3), 106 (1991).
  5. Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
    [CrossRef]
  6. D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
    [CrossRef]
  7. K.-J. Boller, T. Schröder, J. Opt. Soc. Am. B 10, 1778 (1993).
    [CrossRef]
  8. H. Komine, J. Opt. Soc. Am. B 10, 1751 (1993).
    [CrossRef]
  9. T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
    [CrossRef]
  10. R. L. Byer, in Quantum Electronics: A Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. I, Part B, pp. 587–702.
  11. M. Ebrahimzadeh, A. J. Henderson, M. H. Dunn, IEEE J. Quantum Electron. 26, 1241 (1990).
    [CrossRef]
  12. S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
    [CrossRef]
  13. J. G. Haub, R. M. Hentschel, M. J. Johnson, B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” submitted toJ. Opt. Soc. Am. B.
  14. B. Schröder, Opt. Commun. 49, 75 (1984).
    [CrossRef]
  15. R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992)G. Hall, B. J. Whitaker, J. Chem. Soc. Faraday Trans. 90, 1 (1994).
    [CrossRef] [PubMed]

1994 (1)

T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

1993 (4)

1992 (2)

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992)G. Hall, B. J. Whitaker, J. Chem. Soc. Faraday Trans. 90, 1 (1994).
[CrossRef] [PubMed]

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

1991 (2)

A. Fix, T. Schröder, R. Wallenstein, Laser Optoelectron. 23(3), 106 (1991).

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

1990 (2)

W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 56, 1819 (1990).
[CrossRef]

M. Ebrahimzadeh, A. J. Henderson, M. H. Dunn, IEEE J. Quantum Electron. 26, 1241 (1990).
[CrossRef]

1984 (1)

B. Schröder, Opt. Commun. 49, 75 (1984).
[CrossRef]

1979 (1)

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Boller, K.-J.

T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

K.-J. Boller, T. Schröder, J. Opt. Soc. Am. B 10, 1778 (1993).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 56, 1819 (1990).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Brüggemann, D.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Byer, R. L.

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

R. L. Byer, in Quantum Electronics: A Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. I, Part B, pp. 587–702.

Chen, C.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Deng, D.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Dunn, M. H.

M. Ebrahimzadeh, A. J. Henderson, M. H. Dunn, IEEE J. Quantum Electron. 26, 1241 (1990).
[CrossRef]

Ebrahimzadeh, M.

M. Ebrahimzadeh, A. J. Henderson, M. H. Dunn, IEEE J. Quantum Electron. 26, 1241 (1990).
[CrossRef]

Farrow, R. L.

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992)G. Hall, B. J. Whitaker, J. Chem. Soc. Faraday Trans. 90, 1 (1994).
[CrossRef] [PubMed]

Fix, A.

T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, Laser Optoelectron. 23(3), 106 (1991).

Haub, J. G.

A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
[CrossRef]

J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1765 (1993).
[CrossRef]

J. G. Haub, R. M. Hentschel, M. J. Johnson, B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” submitted toJ. Opt. Soc. Am. B.

Henderson, A. J.

M. Ebrahimzadeh, A. J. Henderson, M. H. Dunn, IEEE J. Quantum Electron. 26, 1241 (1990).
[CrossRef]

Hentschel, R. M.

J. G. Haub, R. M. Hentschel, M. J. Johnson, B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” submitted toJ. Opt. Soc. Am. B.

Hertzberg, J.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Herziger, G.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Johnson, M. J.

J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1765 (1993).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
[CrossRef]

J. G. Haub, R. M. Hentschel, M. J. Johnson, B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” submitted toJ. Opt. Soc. Am. B.

Knoche, K.-F.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Komine, H.

Liu, X.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Noll, R.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Orr, B. J.

A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
[CrossRef]

J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1765 (1993).
[CrossRef]

J. G. Haub, R. M. Hentschel, M. J. Johnson, B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” submitted toJ. Opt. Soc. Am. B.

Rakestraw, D. J.

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992)G. Hall, B. J. Whitaker, J. Chem. Soc. Faraday Trans. 90, 1 (1994).
[CrossRef] [PubMed]

Schröder, B.

B. Schröder, Opt. Commun. 49, 75 (1984).
[CrossRef]

Schröder, T.

T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

K.-J. Boller, T. Schröder, J. Opt. Soc. Am. B 10, 1778 (1993).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, Laser Optoelectron. 23(3), 106 (1991).

Tang, C. L.

W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 56, 1819 (1990).
[CrossRef]

Wallenstein, R.

T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, B. J. Orr, J. Opt. Soc. Am. B 10, 1744 (1993).
[CrossRef]

A. Fix, T. Schröder, R. Wallenstein, Laser Optoelectron. 23(3), 106 (1991).

Wang, Y.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Waschke, Y.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Wies, B.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

Wu, B.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Xu, Z.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Zheng, W.

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

Appl. Phys. B (2)

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, Appl. Phys. B 55, 378 (1992).
[CrossRef]

T. Schröder, K.-J. Boller, A. Fix, R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 56, 1819 (1990).
[CrossRef]

Y. Wang, Z. Xu, D. Deng, W. Zheng, X. Liu, B. Wu, C. Chen, Appl. Phys. Lett. 58, 1461 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Ebrahimzadeh, A. J. Henderson, M. H. Dunn, IEEE J. Quantum Electron. 26, 1241 (1990).
[CrossRef]

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

J. Opt. Soc. Am. B (4)

Laser Optoelectron. (1)

A. Fix, T. Schröder, R. Wallenstein, Laser Optoelectron. 23(3), 106 (1991).

Opt. Commun. (1)

B. Schröder, Opt. Commun. 49, 75 (1984).
[CrossRef]

Science (1)

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992)G. Hall, B. J. Whitaker, J. Chem. Soc. Faraday Trans. 90, 1 (1994).
[CrossRef] [PubMed]

Other (2)

J. G. Haub, R. M. Hentschel, M. J. Johnson, B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” submitted toJ. Opt. Soc. Am. B.

R. L. Byer, in Quantum Electronics: A Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. I, Part B, pp. 587–702.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of observed and predicted optical bandwidths for signal radiation from a free-running pulsed BBO OPO as a function of output wavelength. Our experimental results (filled circles) are for an OPO comprising a BBO crystal in a 3-cm singly resonant cavity pumped at 355 nm by a single-mode Nd:YAG laser with low beam divergence (0.2 mrad). The dashed curve represents the single-pass gain bandwidth ΔνSSPG, predicted directly by relations (1) and (2). The solid curve represents the net gain gandwidth ΔνSnet, incorporating a correction for multipass spectral narrowing through an effective crystal length Leff, as discussed in the text.

Fig. 2
Fig. 2

Wavelength and optical bandwidth as a function of position within the output signal beam of a free-running pulsed BBO OPO, using a 6 mm × 6 mm × 12 mm crystal and pumping at 2 times above threshold. The operating wavelength and optical bandwidth are measured while a 0.4-mm aperture is scanned in 0.5-mm steps across the beam: (a) corresponds to scanning the aperture horizontally (in the phase-matching plane), and (b) represents vertical scans. Two different full-angle divergences δθP of the pump beam are employed: 0.2 mrad (filled circles) and 1.7 mrad (open squares). The error bars correspond to the optical bandwidth measured at each point in the OPO output beam.

Fig. 3
Fig. 3

DFWM spectrum of the D lines of atomic sodium in an air–acetylene flame, recorded with the simple free-running BBO OPO characterized in Fig. 2. With the BBO OPO pumped at ~1.5 times above threshold, the FWHM optical bandwidth of the overall OPO signal beam is 20 cm−1 (0.67 nm), as indicated by the dashed curve. However, a narrower effective bandwidth of 4 cm−1 (0.14 nm) is obtained by selection of a small portion of the beam with an adjustable aperture. The spectrum is then scanned by rotation of the BBO crystal, which thereby varies the phase-matching condition.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν S SPG [ ( c / L ) + ( c / 2 λ P ) ( n P / θ P ) 0 δ θ P + Δ ν P β PI ] / β SI ,
β j i = [ ( n j - n i ) - λ j ( n j / λ j ) 0 + λ i ( n i / λ i ) 0 ] ,

Metrics