Abstract

Time-resolved degenerate four-wave mixing experiments on a colloidal solution of 50-nm gold particles in acetone, using a high-repetition-rate laser source, are presented. The signal is found to depend strongly on the repetition rate of the incident radiation and above a frequency of 300 kHz is impossible to measure.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Doyle, Proc. Phys. Soc. 75, 649 (1960).
    [CrossRef]
  2. J. C. Maxwell-Garnett, Philos. Trans. R. Soc.London 205, 237 (1906).
    [CrossRef]
  3. J. A. Shirley, R. J. Hall, A. C. Eckbeth, Opt. Lett. 5, 380 (1980).
    [CrossRef] [PubMed]
  4. A. R. Bogdan, Y. Prior, N. Bloembergen, Opt. Lett. 6, 82 (1981).
    [CrossRef] [PubMed]
  5. P. Horan, Ph.D. dissertation (Trinity College, Dublin, Ireland, 1988).
  6. N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
    [CrossRef]
  7. F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
    [CrossRef]
  8. F. Hache, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986).
    [CrossRef]
  9. F. Hache, D. Ricard, C. Flytzanis, Proc. Soc. Photo- Opt. Instrum. Eng. 1127, 115 (1989).
  10. M. J. Bloemer, J. W. Haus, P. R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990).
    [CrossRef]
  11. E. J. Heilweil, R. M. Hochstrasser, J. Chem. Phys. 82, 4762 (1985).
    [CrossRef]
  12. L. Yang, K. Becker, F. M. Smith, R. H. Magruder, R. F. Haglund, L. Yang, R. Dorsinville, R. R. Alfano, R. A. Zuhr, J. Opt. Soc. Am. B 11, 457 (1994).
    [CrossRef]

1994 (1)

1990 (1)

1989 (1)

F. Hache, D. Ricard, C. Flytzanis, Proc. Soc. Photo- Opt. Instrum. Eng. 1127, 115 (1989).

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

1986 (1)

1985 (2)

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
[CrossRef]

E. J. Heilweil, R. M. Hochstrasser, J. Chem. Phys. 82, 4762 (1985).
[CrossRef]

1981 (1)

1980 (1)

1960 (1)

W. T. Doyle, Proc. Phys. Soc. 75, 649 (1960).
[CrossRef]

1906 (1)

J. C. Maxwell-Garnett, Philos. Trans. R. Soc.London 205, 237 (1906).
[CrossRef]

Alfano, R. R.

Ashley, P. R.

Becker, K.

Bloembergen, N.

Bloemer, M. J.

Bogdan, A. R.

Dorsinville, R.

Doyle, W. T.

W. T. Doyle, Proc. Phys. Soc. 75, 649 (1960).
[CrossRef]

Eckbeth, A. C.

Ferrier, J. L.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
[CrossRef]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, Proc. Soc. Photo- Opt. Instrum. Eng. 1127, 115 (1989).

F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986).
[CrossRef]

Gazengel, J.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, Proc. Soc. Photo- Opt. Instrum. Eng. 1127, 115 (1989).

F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986).
[CrossRef]

Haglund, R. F.

Hall, R. J.

Haus, J. W.

Heilweil, E. J.

E. J. Heilweil, R. M. Hochstrasser, J. Chem. Phys. 82, 4762 (1985).
[CrossRef]

Hochstrasser, R. M.

E. J. Heilweil, R. M. Hochstrasser, J. Chem. Phys. 82, 4762 (1985).
[CrossRef]

Horan, P.

P. Horan, Ph.D. dissertation (Trinity College, Dublin, Ireland, 1988).

Kriebig, U.

F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

Magruder, R. H.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, Philos. Trans. R. Soc.London 205, 237 (1906).
[CrossRef]

Prior, Y.

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, Proc. Soc. Photo- Opt. Instrum. Eng. 1127, 115 (1989).

F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986).
[CrossRef]

Rivoire, G.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
[CrossRef]

Shirley, J. A.

Smith, F. M.

Xuan, N. P.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
[CrossRef]

Yang, L.

Zuhr, R. A.

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, U. Kriebig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

J. Chem. Phys. (1)

E. J. Heilweil, R. M. Hochstrasser, J. Chem. Phys. 82, 4762 (1985).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, Opt. Commun. 51, 433 (1985).
[CrossRef]

Opt. Lett. (2)

Philos. Trans. R. Soc. (1)

J. C. Maxwell-Garnett, Philos. Trans. R. Soc.London 205, 237 (1906).
[CrossRef]

Proc. Phys. Soc. (1)

W. T. Doyle, Proc. Phys. Soc. 75, 649 (1960).
[CrossRef]

Proc. Soc. Photo- Opt. Instrum. Eng. (1)

F. Hache, D. Ricard, C. Flytzanis, Proc. Soc. Photo- Opt. Instrum. Eng. 1127, 115 (1989).

Other (1)

P. Horan, Ph.D. dissertation (Trinity College, Dublin, Ireland, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Linear absorption spectrum of the sample in a 1-mm cell.

Fig. 2
Fig. 2

Experimental setup for degenerate four-wave mixing with the folded-boxcar configuration: CD, cavity dumper.

Fig. 3
Fig. 3

Diffraction efficiency versus delay time for different repetition rates. The peak intensity is dependent on the repetition rate and is of the order of 1 MW/cm2, and the average intensity is of the order of 1 mW/cm2.

Fig. 4
Fig. 4

Macroscopic nonlinearity χ(3) versus the absorption coefficient squared.

Fig. 5
Fig. 5

Decay profile of the probe beam compared with a CS2 reference: solid curve, sample; dotted curve, reference.

Tables (1)

Tables Icon

Table 1 Values for the Susceptibility of the Inclusions, Taking into Account the Local Field Factor f1a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = 18 π λ p ɛ h 3 / 2 ɛ i ( ɛ i + 2 ɛ h ) 2 + 2 ɛ i 2 ,
χ ( 3 ) = 8 c 2 n 2 ɛ 0 α η 3 ω I T ( 1 - T ) .
χ ( 3 ) = χ CS 2 ( 3 ) I I CS 2 n 2 n CS 2 2 d CS 2 α exp ( α d / 2 ) 1 - exp ( - α d ) ,
χ i ( 3 ) = χ ( 3 ) / p f 1 2 f 1 2 ,

Metrics