Abstract

The excitation process of short optical pulses in waveguides by use of prism couplers is studied with a fully dynamic model. A good coupling efficiency is obtained even for short pulses. Fast nonlinear behavior such as power limiting and optical switching is predicted with a response time much shorter than the buildup time of the waveguide coupler. This new result is due to the group-velocity matching between the guided and the pump fields.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vitrant, M. Haelterman, R. Reinisch, J. Opt. Soc. Am. B 9, 1319 (1990).
    [Crossref]
  2. G. Assanto, M. B. Marques, G. I. Stegeman, J. Opt. Soc. Am. B 8, 553 (1991).
    [Crossref]
  3. G. Vitrant, M. Haelterman, R. Reinisch, Phys. Rev. B 48, 15,465 (1993).
    [Crossref]
  4. M. Haelterman, G. Vitrant, J. Opt. Soc. Am. B 9, 1563 (1992).
    [Crossref]
  5. G. Vitrant, J. Danckaert, Chaos 4, 1369 (1994).
  6. T. Peschel, F. Lederer, Phys. Rev. B 46, 7632 (1992).
    [Crossref]
  7. C. Liao, G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984).
    [Crossref]
  8. J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
    [Crossref] [PubMed]
  9. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).
    [Crossref]

1994 (1)

G. Vitrant, J. Danckaert, Chaos 4, 1369 (1994).

1993 (2)

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
[Crossref] [PubMed]

G. Vitrant, M. Haelterman, R. Reinisch, Phys. Rev. B 48, 15,465 (1993).
[Crossref]

1992 (2)

M. Haelterman, G. Vitrant, J. Opt. Soc. Am. B 9, 1563 (1992).
[Crossref]

T. Peschel, F. Lederer, Phys. Rev. B 46, 7632 (1992).
[Crossref]

1991 (1)

1990 (1)

G. Vitrant, M. Haelterman, R. Reinisch, J. Opt. Soc. Am. B 9, 1319 (1990).
[Crossref]

1984 (1)

C. Liao, G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984).
[Crossref]

1970 (1)

Assanto, G.

Danckaert, J.

G. Vitrant, J. Danckaert, Chaos 4, 1369 (1994).

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
[Crossref] [PubMed]

Georgiou, M.

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
[Crossref] [PubMed]

Haelterman, M.

G. Vitrant, M. Haelterman, R. Reinisch, Phys. Rev. B 48, 15,465 (1993).
[Crossref]

M. Haelterman, G. Vitrant, J. Opt. Soc. Am. B 9, 1563 (1992).
[Crossref]

G. Vitrant, M. Haelterman, R. Reinisch, J. Opt. Soc. Am. B 9, 1319 (1990).
[Crossref]

Lederer, F.

T. Peschel, F. Lederer, Phys. Rev. B 46, 7632 (1992).
[Crossref]

Liao, C.

C. Liao, G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984).
[Crossref]

Marques, M. B.

Peschel, T.

T. Peschel, F. Lederer, Phys. Rev. B 46, 7632 (1992).
[Crossref]

Reinisch, R.

G. Vitrant, M. Haelterman, R. Reinisch, Phys. Rev. B 48, 15,465 (1993).
[Crossref]

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
[Crossref] [PubMed]

G. Vitrant, M. Haelterman, R. Reinisch, J. Opt. Soc. Am. B 9, 1319 (1990).
[Crossref]

Stegeman, G. I.

Ulrich, R.

Vitrant, G.

G. Vitrant, J. Danckaert, Chaos 4, 1369 (1994).

G. Vitrant, M. Haelterman, R. Reinisch, Phys. Rev. B 48, 15,465 (1993).
[Crossref]

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
[Crossref] [PubMed]

M. Haelterman, G. Vitrant, J. Opt. Soc. Am. B 9, 1563 (1992).
[Crossref]

G. Vitrant, M. Haelterman, R. Reinisch, J. Opt. Soc. Am. B 9, 1319 (1990).
[Crossref]

Appl. Phys. Lett. (1)

C. Liao, G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984).
[Crossref]

Chaos (1)

G. Vitrant, J. Danckaert, Chaos 4, 1369 (1994).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Phys. Rev. A (1)

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, Phys. Rev. A 48, 2324 (1993).
[Crossref] [PubMed]

Phys. Rev. B (2)

G. Vitrant, M. Haelterman, R. Reinisch, Phys. Rev. B 48, 15,465 (1993).
[Crossref]

T. Peschel, F. Lederer, Phys. Rev. B 46, 7632 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the prism coupler under short light-pulse excitation. Here the pulse duration is shorter than the buildup time of the coupler, and thus its length is shorter than the coupling length lc. As a result, a bright spot propagates along the base of the prism at the same speed as the guided wave.

Fig. 2
Fig. 2

Switching dynamics for Δβ = −3βi. The guided-wave intensity Ig(zm, t) is plotted versus time (t/tp) for three different pulse durations. The time dependence of the incident pulse Ii(zm, t) is shown by curve a (identical for the three cases). Switching is found to be faster than tc.

Fig. 3
Fig. 3

Instantaneous transfer function for tp = tc. Ig(zm, t) is plotted versus Ii(zm, t) for four initial detunings. The guided-wave intensity is found to follow almost instantaneously the incident intensity.

Fig. 4
Fig. 4

The pulse coupling efficiency is plotted versus the energy of the incident pulse for conditions similar to those for Fig. 3. Switching (curves c and d) is observed when the coupler is initially detuned with the correct sign.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 υ g A g t = - A g z + j [ - Δ β + Δ β 2 A g ( z , t ) 2 ] A g ( z , t ) - 1 l c A g + ξ A i ( z , t ) ,
A i ( z , t ) = exp { - [ z cos ( θ ) w ] 2 } × exp { - [ n p sin ( θ ) c z - t t p ] 2 } × exp [ j k n p sin ( θ ) z - j ω t ] , A i ( z , t ) = A i ( z , t ) exp [ - j k n p sin ( θ ) z + j ω t ] ,

Metrics