Abstract

We have fabricated subwavelength diffractive optical elements with binary phase profiles for operation at 975 nm. The individual surface-relief features of the elements are smaller than the wavelength of light in the material. By modulating the size and spacing of the features we form artificial, gradient, effective index-of refraction surfaces. The blazed transmission gratings were designed with rigorous coupled-wave analysis and fabricated by direct-write electron-beam lithography and reactive ion-beam etching in GaAs. The gratings have minimum features 63 nm wide. Transmission measurements show 85% diffraction efficiency into the first order.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stork, N. Streibl, H. Haidner, P. Kipfer, Opt. Lett. 16, 1921 (1991).
    [CrossRef] [PubMed]
  2. M. W. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  3. P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 79 (1994).
    [CrossRef]
  4. Z. J. Zhou, T. J. Drabik, J. Opt. Soc. Am. A 12, 1104 (1995).
    [CrossRef]
  5. M. Collischon, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, Appl. Opt. 33, 3572 (1994).
    [CrossRef] [PubMed]
  6. F. T. Chen, H. G. Craighead, Opt. Lett. 20, 121 (1995).
    [CrossRef] [PubMed]
  7. G. J. Swanson, W. B. Veldkamp, Opt. Eng. 28, 605 (1989).
  8. Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, Appl. Opt. 26, 1142 (1987).
    [CrossRef] [PubMed]
  9. D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
    [CrossRef]
  10. E. Noponen, J. Turunen, J. Opt. Soc. Am. A 11, 1097 (1994).
    [CrossRef]
  11. H. Haidner, J. T. Sheridan, N. Streibl, Appl. Opt. 32, 4276 (1993).
    [CrossRef] [PubMed]
  12. T. K. Gaylord, M. G. Moharam, Proc. IEEE 73, 894 (1985).
    [CrossRef]
  13. The Mathworks, Inc., Natick. Mass.
  14. K. Asakawa, S. Sugata, J. Vac. Sci. Technol. B 3, 402 (1985).
    [CrossRef]

1995 (2)

1994 (3)

1993 (1)

1992 (1)

1991 (1)

1989 (1)

G. J. Swanson, W. B. Veldkamp, Opt. Eng. 28, 605 (1989).

1987 (1)

1985 (2)

T. K. Gaylord, M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

K. Asakawa, S. Sugata, J. Vac. Sci. Technol. B 3, 402 (1985).
[CrossRef]

1983 (1)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Asakawa, K.

K. Asakawa, S. Sugata, J. Vac. Sci. Technol. B 3, 402 (1985).
[CrossRef]

Chen, F. T.

Collischon, M.

M. Collischon, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, Appl. Opt. 33, 3572 (1994).
[CrossRef] [PubMed]

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 79 (1994).
[CrossRef]

Craighead, H. G.

Drabik, T. J.

Farn, M. W.

Flanders, D. C.

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

Haidner, H.

Kimura, Y.

Kipfer, P.

Lang, A.

Lindolf, J.

Londolf, J.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 79 (1994).
[CrossRef]

Moharam, M. G.

T. K. Gaylord, M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

Nishida, N.

Noponen, E.

Ohta, Y.

Ono, Y.

Schwider, J.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 79 (1994).
[CrossRef]

M. Collischon, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, Appl. Opt. 33, 3572 (1994).
[CrossRef] [PubMed]

Sheridan, J. T.

Stork, W.

Streibl, N.

Sugata, S.

K. Asakawa, S. Sugata, J. Vac. Sci. Technol. B 3, 402 (1985).
[CrossRef]

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, Opt. Eng. 28, 605 (1989).

Turunen, J.

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, Opt. Eng. 28, 605 (1989).

Zhou, Z. J.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

K. Asakawa, S. Sugata, J. Vac. Sci. Technol. B 3, 402 (1985).
[CrossRef]

Opt. Eng. (2)

G. J. Swanson, W. B. Veldkamp, Opt. Eng. 28, 605 (1989).

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Londolf, Opt. Eng. 33, 79 (1994).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

T. K. Gaylord, M. G. Moharam, Proc. IEEE 73, 894 (1985).
[CrossRef]

Other (1)

The Mathworks, Inc., Natick. Mass.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optimized groove profile for one period of the blazed transmission grating. The narrowest ridge in the design is 62.5 nm wide, and the narrowest groove is 115 nm wide. The design etch depth is 642 nm.

Fig. 2
Fig. 2

Calculated values of the most important transmitted and reflected orders of the optimized grating design in Fig. 1 as a function of wavelength.

Fig. 3
Fig. 3

Scanning-electron micrograph of a cross section of a single period of a subwavelength blazed transmission grating.

Fig. 4
Fig. 4

Plot from a 180° scan of the diffraction from the subwavelength grating showing the power in each order relative to the first order at 975 nm. The diffraction efficiency into the first order is 85%.

Metrics