Abstract

We have demonstrated a method that efficiently transfers the power from a single-frequency laser into a wideband frequency comb. The comb was produced by a 2.7-GHz electro-optic modulator in a resonant optical cavity. A coupled cavity technique was used to transfer 8.5% of the laser power into a comb with a span of 400 modes, or more than 1 THz.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
    [CrossRef] [PubMed]
  2. M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
    [CrossRef]
  3. L. R. Brothers, D. Lee, N. C. Wong, Opt. Lett. 19, 245 (1994).
    [CrossRef] [PubMed]
  4. M. Kourogi, T. Enami, M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
    [CrossRef]
  5. I. P. Kaminow, W. M. Sharpless, Appl. Opt. 6, 351 (1967).
    [CrossRef] [PubMed]
  6. R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  7. Newport Supercavity Model SR-240-SF.
  8. T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
    [CrossRef]
  9. Data sheet, Crystal Technology, Inc., 1053 East Meadow Circle, Palo Alto, Calif. 94303.

1994 (2)

L. R. Brothers, D. Lee, N. C. Wong, Opt. Lett. 19, 245 (1994).
[CrossRef] [PubMed]

M. Kourogi, T. Enami, M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

1993 (1)

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

1992 (1)

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1972 (1)

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

1967 (1)

Andreae, T.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Brothers, L. R.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Enami, T.

M. Kourogi, T. Enami, M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hänsch, T. W.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kaminow, I. P.

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Konig, W.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Kourogi, M.

M. Kourogi, T. Enami, M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Kowalski, K. V.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lee, D.

Leibfried, D.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Meschede, D.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Ohtsu, M.

M. Kourogi, T. Enami, M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Schmidt-Kaler, F.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Sharpless, W. M.

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wong, N. C.

Wynands, R.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Zimmermann, C.

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kourogi, T. Enami, M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, T. W. Hänsch, Phys. Rev. Lett. 69, 1923 (1992).
[CrossRef] [PubMed]

Other (2)

Data sheet, Crystal Technology, Inc., 1053 East Meadow Circle, Palo Alto, Calif. 94303.

Newport Supercavity Model SR-240-SF.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. A Faraday isolator is used to prevent feedback from the optical cavities to the Ti:sapphire laser. The first EOM is used to provide the sidebands to lock the cavity formed by M1 and M2 to the laser frequency. The signal from the avalanche photodiode (ADP) is demodulated to provide an error signal to lock the second cavity formed by M2– M4. The error signal is integrated and amplified before being used to drive the piezoelectric transducer on M4. DBM, double-balanced mixer.

Fig. 2
Fig. 2

Sweep of the length of the second cavity over approximately two FSR’s showing the following: (a) The output intensity from the OFCG with the EOM switched on. The structure in the dip is caused by modes other than the TEM00 cavity mode. (b) The demodulated error signal, which is the first derivative of the transmission intensity.

Fig. 3
Fig. 3

Spectrum of the frequency comb obtained by use of the high-finesse cavity. The spectrum shows the power in each comb mode as a function of mode number. The expanded portion of the comb shows mode numbers 150 to 200 with the vertical scale increased by a factor of 250 and the horizontal scale by a factor of 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 cos ( 2 π ν 0 t + m sin 2 π f m t ) ,
P n = η FP ( π 2 m F ) 2 exp ( - n π m F ) P in ,

Metrics