Abstract

The operation of a narrow-linewidth optical filter based on the 4P1/2 → 8S1/2 excited-state transition in potassium vapor is reported. The 4P1/2 state is excited by a circularly polarized, 769.9-nm, 10-ns pulse from a dye laser. A linearly polarized, time-sequenced, and spatially overlapped probe pulse at 532.33 nm completes the transition to the 8S1/2 state. The peak filter transmission is ~40% with a bandwidth of less than 4 GHz. Corroborative experimental results suggest that the rotation of probe-pulse polarization by an induced circular birefringence is the dominant mechanism behind the filter operation.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
    [CrossRef]
  2. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, D. M. Allocca, Opt. Lett. 20, 106 (1995).
    [CrossRef] [PubMed]
  3. D. J. Dick, T. M. Shay, Opt. Lett. 16, 867 (1991); J. Menders, K. Benson, S. H. Bloom, C. S. Liu, E. Korevaar, Opt. Lett. 16, 846 (1991).
    [CrossRef] [PubMed]
  4. J. B. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
    [CrossRef]
  5. W. L. Wiese, G. A. Martin, in Physics Vade Mecum, H. L. Anderson, ed. (American Institute of Physics, New York, 1981), p. 100.The quoted value of 2.6 ns in Ref. 2 is in error.
  6. The circularly polarized probe beam was analyzed with a linear polarizer both before and after it was reflected by the beam combiner. The ratio of beam intensities measured in two mutually orthogonal directions was ~0.7 for the reflected beam, as compared with near unity before reflection.
  7. N. W. Ressler, R. H. Sands, T. E. Stark, Phys. Rev. 184, 102 (1969).
    [CrossRef]

1995 (1)

1991 (1)

1979 (1)

J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
[CrossRef]

1978 (1)

J. B. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
[CrossRef]

1969 (1)

N. W. Ressler, R. H. Sands, T. E. Stark, Phys. Rev. 184, 102 (1969).
[CrossRef]

Allocca, D. M.

Billmers, R. I.

Contarino, V. M.

Dick, D. J.

Gayen, S. K.

Marling, J. B.

J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
[CrossRef]

J. B. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
[CrossRef]

Martin, G. A.

W. L. Wiese, G. A. Martin, in Physics Vade Mecum, H. L. Anderson, ed. (American Institute of Physics, New York, 1981), p. 100.The quoted value of 2.6 ns in Ref. 2 is in error.

Nilsen, J.

J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
[CrossRef]

Ressler, N. W.

N. W. Ressler, R. H. Sands, T. E. Stark, Phys. Rev. 184, 102 (1969).
[CrossRef]

Sands, R. H.

N. W. Ressler, R. H. Sands, T. E. Stark, Phys. Rev. 184, 102 (1969).
[CrossRef]

Scharpf, W. J.

Shay, T. M.

Squicciarini, M. F.

Stark, T. E.

N. W. Ressler, R. H. Sands, T. E. Stark, Phys. Rev. 184, 102 (1969).
[CrossRef]

West, L. C.

J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
[CrossRef]

Wiese, W. L.

W. L. Wiese, G. A. Martin, in Physics Vade Mecum, H. L. Anderson, ed. (American Institute of Physics, New York, 1981), p. 100.The quoted value of 2.6 ns in Ref. 2 is in error.

Wood, L. L.

J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. B. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
[CrossRef]

J. Appl. Phys. (1)

J. B. Marling, J. Nilsen, L. C. West, L. L. Wood, J. Appl. Phys. 50, 610 (1979).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

N. W. Ressler, R. H. Sands, T. E. Stark, Phys. Rev. 184, 102 (1969).
[CrossRef]

Other (2)

W. L. Wiese, G. A. Martin, in Physics Vade Mecum, H. L. Anderson, ed. (American Institute of Physics, New York, 1981), p. 100.The quoted value of 2.6 ns in Ref. 2 is in error.

The circularly polarized probe beam was analyzed with a linear polarizer both before and after it was reflected by the beam combiner. The ratio of beam intensities measured in two mutually orthogonal directions was ~0.7 for the reflected beam, as compared with near unity before reflection.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement for demonstrating the filter operation: PDL’s, pulsed dye lasers; PHS, prism harmonic separator; HG, harmonic generators; PMT, photomultiplier tube; QWP, quarter-wave plate; BC, beam combiner; F, combination of a bandpass filter and a colored-glass filter.

Fig. 2
Fig. 2

Transmission spectrum of the filter showing two barely resolved peaks near 532.33 nm measured with a probe dye laser of bandwidth ~4 GHz. The inset shows that the peaks are better resolved when the spectrum is measured with a resolution of ~1 GHz. The higher resolution was attained by use of an étalon in the probe dye-laser cavity. The zero of the inset horizontal scale corresponds to 532.33 nm. The frequency separation (Δν) of the peaks from this reference position is shown in the inset. The arrow points toward the broad feature whose spectral position and strength changes with pump intensity, as discussed in the text.

Fig. 3
Fig. 3

Excited-state circular dichroism spectra near 532 nm. The inset shows the simplified energy-level diagram of the K vapor and an allowed two-step transition with circularly polarized light.

Metrics