Abstract

A novel configuration for four-wave mixing (FWM) is proposed that offers the remarkable feature of inherently separating the FWM wave from the input pump and signal waves and suppressing their background amplified stimulated emission without optical filtering. In the proposed configuration, an optical parametric loop mirror, two counterpropagating FWM waves generated in a Sagnac interferometer interfere with a relative phase difference that is introduced deliberately. FWM frequency-conversion experiments in a polarization-maintaining fiber achieved more than 35 dB of input-wave suppression against the FWM wave.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
    [CrossRef]
  2. K. Inoue, T. Mukai, T. Saitoh, Appl. Phys. Lett. 51, 1051 (1987).
    [CrossRef]
  3. P. A. Andrekson, Electron. Lett. 27, 1440 (1991).
    [CrossRef]
  4. S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
    [CrossRef]
  5. K. Mori, T. Morioka, M. Saruwatari, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThT2.
  6. E. A. Swanson, J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
    [CrossRef]

1994 (2)

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

E. A. Swanson, J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

1993 (1)

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

1991 (1)

P. A. Andrekson, Electron. Lett. 27, 1440 (1991).
[CrossRef]

1987 (1)

K. Inoue, T. Mukai, T. Saitoh, Appl. Phys. Lett. 51, 1051 (1987).
[CrossRef]

Andrekson, P. A.

P. A. Andrekson, Electron. Lett. 27, 1440 (1991).
[CrossRef]

Chikama, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Inoue, K.

K. Inoue, T. Mukai, T. Saitoh, Appl. Phys. Lett. 51, 1051 (1987).
[CrossRef]

Jacob, J. M.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

Kamatani, O.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

Kawanishi, S.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

Moores, J. D.

E. A. Swanson, J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

Mori, K.

K. Mori, T. Morioka, M. Saruwatari, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThT2.

Morioka, T.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

K. Mori, T. Morioka, M. Saruwatari, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThT2.

Mukai, T.

K. Inoue, T. Mukai, T. Saitoh, Appl. Phys. Lett. 51, 1051 (1987).
[CrossRef]

Naito, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Saitoh, T.

K. Inoue, T. Mukai, T. Saitoh, Appl. Phys. Lett. 51, 1051 (1987).
[CrossRef]

Saruwatari, M.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

K. Mori, T. Morioka, M. Saruwatari, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThT2.

Swanson, E. A.

E. A. Swanson, J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

Takara, H.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

Watanabe, S.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

K. Inoue, T. Mukai, T. Saitoh, Appl. Phys. Lett. 51, 1051 (1987).
[CrossRef]

Electron. Lett. (2)

P. A. Andrekson, Electron. Lett. 27, 1440 (1991).
[CrossRef]

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, M. Saruwatari, Electron. Lett. 30, 981 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

E. A. Swanson, J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Other (1)

K. Mori, T. Morioka, M. Saruwatari, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThT2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic configurations of the PALM. (a) Type I scheme: the pump and the signal waves are input into port 1. (b) Type II scheme: the pump wave is input into port 1 and the signal wave into port 2.

Fig. 2
Fig. 2

Interferometric operations of the PALM. (a) Type I scheme (solid curve, theory; open circles, experiment), (b) Type II scheme (dashed curve, theory; filled circles, experiment).

Fig. 3
Fig. 3

Spectra observed in the type I scheme (a) when ΔβL = 0, (b) when ΔβL = 3.17 ≈ π. Solid curves, PALM output at port 2; dotted curves, output of the nonlinear medium at port 4. Wavelength resolution 0.2 nm.

Fig. 4
Fig. 4

Observed spectra in the type II scheme when ΔβL = 0. The wavelength spacing between the pump and the signal waves is 0.33 nm. Wavelength resolution 0.1 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E f 3 = - i ( η / 8 ) 1 / 2 E p 2 E s * exp [ - i β ( ω f ) L ] ,
E f 4 = ( η / 8 ) 1 / 2 E p 2 E s * exp { - i [ 2 β ( ω p ) - β ( ω s ) ] L } ,
P 1 = E f 3 - i E f 4 2 2 = P FWM 1 + cos Δ β L 2 ,
P 2 = - i E f 3 + E f 4 2 2 = P FWM 1 - cos Δ β L 2 ,
E f 3 = - ( η / 8 ) 1 / 2 E p 2 E s * exp [ - i β ( ω f ) L ] ,
E f 4 = i ( η / 8 ) 1 / 2 E p 2 E s * exp { - i [ 2 β ( ω p ) - β ( ω s ) ] L } ,
P 1 = P FWM 1 - cos Δ β L 2 ,
P 2 = P FWM 1 + cos Δ β L 2 ,

Metrics