Abstract

We show that a reduction in the pulse distortion caused by chromatic dispersion can be achieved through pulse shaping. We argue that a simple binary phase mask in the Fourier plane of the laser spectrum can improve the transmission of short pulses in a dispersive channel through reduced broadening. The argument was tested experimentally, and a good agreement was found with the theory.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
    [CrossRef]
  2. L. J. Cimini, L. J. Greenstein, A. A. M. Sleh, J. Lightwave Technol. 8, 649 (1990).
    [CrossRef]
  3. A. Yariv, D. Fekete, D. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef] [PubMed]
  4. N. Henmi, T. Saito, T. Ishida, J. Lightwave Technol. 12, 1706 (1994).
    [CrossRef]
  5. T. L. Koch, R. C. Alferness, J. Lightwave Technol. LT-3, 800 (1985).
    [CrossRef]
  6. S. P. Dijaili, A. Dienes, J. S. Smith, IEEE J. Quantum Electron. QE-6, 1158 (1990).
    [CrossRef]
  7. L. F. Mollenauer, K. Smith, Opt. Lett. 13, 675 (1988).
    [CrossRef] [PubMed]
  8. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), p. 62.
  9. J. Rosen, B. Salik, A. Yariv, H. K. Liu, Opt. Lett. 20, 423 (1995).
    [CrossRef] [PubMed]
  10. B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A (to be published).
  11. R. A. Salvatore, T. Schrans, A. Yariv, Opt. Lett. 20, 737 (1995).
    [CrossRef] [PubMed]
  12. S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
    [CrossRef]
  13. A. M. Weiner, J. P. Heritage, E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  14. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  15. D. C. O’Shea, J. W. Beletic, M. Poutous, Appl. Opt. 32, 2566 (1993).
    [CrossRef]

1995 (2)

1994 (1)

N. Henmi, T. Saito, T. Ishida, J. Lightwave Technol. 12, 1706 (1994).
[CrossRef]

1993 (1)

1991 (1)

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

1990 (2)

S. P. Dijaili, A. Dienes, J. S. Smith, IEEE J. Quantum Electron. QE-6, 1158 (1990).
[CrossRef]

L. J. Cimini, L. J. Greenstein, A. A. M. Sleh, J. Lightwave Technol. 8, 649 (1990).
[CrossRef]

1988 (2)

1987 (1)

O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
[CrossRef]

1985 (1)

T. L. Koch, R. C. Alferness, J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

1979 (1)

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Alferness, R. C.

T. L. Koch, R. C. Alferness, J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

Beletic, J. W.

Cimini, L. J.

L. J. Cimini, L. J. Greenstein, A. A. M. Sleh, J. Lightwave Technol. 8, 649 (1990).
[CrossRef]

Dienes, A.

S. P. Dijaili, A. Dienes, J. S. Smith, IEEE J. Quantum Electron. QE-6, 1158 (1990).
[CrossRef]

Dijaili, S. P.

S. P. Dijaili, A. Dienes, J. S. Smith, IEEE J. Quantum Electron. QE-6, 1158 (1990).
[CrossRef]

Fekete, D.

Greenstein, L. J.

L. J. Cimini, L. J. Greenstein, A. A. M. Sleh, J. Lightwave Technol. 8, 649 (1990).
[CrossRef]

Henmi, N.

N. Henmi, T. Saito, T. Ishida, J. Lightwave Technol. 12, 1706 (1994).
[CrossRef]

Heritage, J. P.

Ishida, T.

N. Henmi, T. Saito, T. Ishida, J. Lightwave Technol. 12, 1706 (1994).
[CrossRef]

Kirschner, E. M.

Koch, T. L.

T. L. Koch, R. C. Alferness, J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

Liu, H. K.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
[CrossRef]

Mollenauer, L. F.

O’Shea, D. C.

Paslaski, J.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Pepper, D.

Poutous, M.

Rosen, J.

J. Rosen, B. Salik, A. Yariv, H. K. Liu, Opt. Lett. 20, 423 (1995).
[CrossRef] [PubMed]

B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A (to be published).

Saito, T.

N. Henmi, T. Saito, T. Ishida, J. Lightwave Technol. 12, 1706 (1994).
[CrossRef]

Salik, B.

J. Rosen, B. Salik, A. Yariv, H. K. Liu, Opt. Lett. 20, 423 (1995).
[CrossRef] [PubMed]

B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A (to be published).

Salvatore, R. A.

Sanders, S.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Schrans, T.

Sleh, A. A. M.

L. J. Cimini, L. J. Greenstein, A. A. M. Sleh, J. Lightwave Technol. 8, 649 (1990).
[CrossRef]

Smith, J. S.

S. P. Dijaili, A. Dienes, J. S. Smith, IEEE J. Quantum Electron. QE-6, 1158 (1990).
[CrossRef]

Smith, K.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Ungar, J. E.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Weiner, A. M.

Yariv, A.

R. A. Salvatore, T. Schrans, A. Yariv, Opt. Lett. 20, 737 (1995).
[CrossRef] [PubMed]

J. Rosen, B. Salik, A. Yariv, H. K. Liu, Opt. Lett. 20, 423 (1995).
[CrossRef] [PubMed]

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

A. Yariv, D. Fekete, D. Pepper, Opt. Lett. 4, 52 (1979).
[CrossRef] [PubMed]

B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A (to be published).

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), p. 62.

Zarem, H. A.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

IEEE J. Quantum Electron. (3)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
[CrossRef]

S. P. Dijaili, A. Dienes, J. S. Smith, IEEE J. Quantum Electron. QE-6, 1158 (1990).
[CrossRef]

J. Lightwave Technol. (3)

L. J. Cimini, L. J. Greenstein, A. A. M. Sleh, J. Lightwave Technol. 8, 649 (1990).
[CrossRef]

N. Henmi, T. Saito, T. Ishida, J. Lightwave Technol. 12, 1706 (1994).
[CrossRef]

T. L. Koch, R. C. Alferness, J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Other (2)

B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A (to be published).

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), p. 62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pulse intensity I (T, z) normalized by I (0, 0) versus T/Tb for different values of β 2 z / 2 T b 2. (a)–(d) U(ω, 0) = UB(ω, 0) and TbΔω = 4.044. (e)–(h) The solid curves result from US(ω, 0) =1 and TbΔω = 2.156 having the same pulse main lobe width at z = 0; the dotted curves represent a Gaussian pulse with the same pulse width at z = 0. The GVD is equal to zero in (a) and (e), whereas for (b) and (f ) β 2 z / 2 T b 2 = 0.8, for (c) and (g) β 2 z / 2 T b 2 = 1.6, and for (d) and (h) β 2 z / 2 T b 2 = 2.2.

Fig. 2
Fig. 2

Fourier-transform pulse shaping, compression, and fiber GVD simulated apparatus. Optical frequency components of the input laser pulse are spatially dispersed and filtered through the spatial binary phase mask to reshape the pulse and then spatially recombined. The left-hand grating is placed in the focal point of the lens, whereas the right-hand grating is movable to achieve compression and different chirp values for GVD.

Fig. 3
Fig. 3

Comparison between experimental (dotted curves) and theoretical (solid curves) autocorrelation results. (a)–(c) U(ω, 0) = UB(ω, 0) and TbΔω = 4.044; (d)–(f ) US(ω, 0)=1 and TbΔω = 2.156. The measurements were taken for different GVD’s: (a), (d) β 2 z / 2 T b 2 = 0; (b), (e) β 2 z / 2 T b 2 = 1.1; (c), (f) β 2 z / 2 T b 2 = 2.2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u ( T , z ) = - Δ ω / 2 Δ ω / 2 U ( ω , z = 0 ) exp ( i β 2 z ω 2 2 - i ω T ) d ω ,
u ( T , 0 ) = u C ( T , 0 ) = 1 2 i π β 2 f - cos [ t b p - ( t a ) 2 ] × exp ( i T t β 2 f ) d t
U ( ω , 0 ) = U C ( ω , 0 ) = cos [ ( T b ω ) 4 - ( T a ω ) 2 ] ,
I G ( T , z ) I G ( 0 , 0 ) = exp { - T 2 T G 2 [ 1 + ( β 2 z / T G 2 ) 2 ] } [ 1 + ( β 2 z / T G 2 ) 2 ] 1 / 2 .
β 2 z 2 T b 2 = λ 0 3 z 4 π T b 2 c 2 d 2 cos 2 ( θ ) ,

Metrics